Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Área Superficial e Porosidade da Fibra Alimentar do Albedo de Laranja

DOI: http://dx.doi.org/10.15871/1517-8595/rbpa.v14n3p261-273

http://rbpaonline.com/

downloadpdf

Maristela de F. S. de Santana1, Marcel E. Katekawa2, Kátia Tannous3, Anny K. V. de O. Lima4 & Carlos A. Gasparetto5

 

Resumo: As fibras alimentares são obtidas de vários vegetais e são consumidas na forma natural ou adicionadas na composição de alimentos industrializados, na forma de pó, com fins de alterar suas propriedades nutricionais e tecnológicas. Relevantes características físicas dos materiais particulados são: a área superficial e, tamanho e distribuição de poros. Estas características foram estudadas para fibra alimentar do albedo da laranja, desidratada por liofilização e secador de leito fixo, estando separadas em três intervalos granulométricos de 0,420 a 0,150mm. As características da superfície das partículas foram investigadas usando adsorção de nitrogênio a baixa temperatura. A área superficial específica, volume e diâmetro médio de mesoporo foram determinados empregando o método BET (Brunauer, Emmett and Teller) a área superficial acumulativa, volume, diâmetro médio e distribuição de poros, usando o método BJH (Barret, Joyner and Halenda). Verificou-se que diferentes métodos de secagem e tamanhos das partículas promoveram diferenças significativas nas propriedades físicas da fibra.

Palavras-chave: Isotermas de adsorção, características superficiais, tecnologia de partículas.

 

Abstract: Dietary fibers are obtained from several vegetables and they are consumed in natural form or added in the composition of industrialized foods, as powder, to alter their nutritional and technological properties. Relevant physical characteristics of these powders are the superficial area, size and pore distribution. These characteristics were studied for the albedo dietary fiber extracted from oranges. They were dehydrated by freezer-dryer and fixed bed dryer separated in three particle size intervals from 0,420 to 0,150mm. The surface characteristics of the particles were investigated using nitrogen adsorption at low temperature. The specific superficial area, volume and medium diameter of mesopore were obtained using the BET method (Brunauer, Emmett and Teller); the accumulative superficial area, volume, medium diameter and distribution of pores, using the BJH method (Barret, Joyner and Halenda). Different drying methods and particle size promoted significant differences in the physical properties of the fiber.

Key words: adsorption isotherms, superficial characteristics, physical properties.

 

1 Pesquisadora da área de Agroindústria – Doutora - Ministério da Ciência, Tecnologia e Inovação, Instituto Nacional do Semiárido, Av. Francisco Lopes de Almeida, S/N - Bairro Serrotão - CEP: 58434-700 - Campina Grande – PB – Brasil – email : maristelasantana@gmail.com
2 Doutor em Engenharia Química – UNICAMP – Campinas – SP – Brasil.
3 Professora – Doutora – Departamento de Engenharia Química, UNICAMP – Campinas – SP – Brasil - email : katiatannous@gmail.com
4 Bolsista CAPES/ INSA/ MCTI - Área de Agroindústria – Doutora - Av. Francisco Lopes de Almeida, S/N - Bairro Serrotão - CEP: 58434-700 - Campina Grande – PB – Brasil – email : annykelly@gmail.com
5 Professor do Departamento de Engenharia de Akimentos FEA – UNICAMP – Campinas – SP – Brasil.

 

Literatura citada

Abecitrus. Associação Brasileira de Produtores de Citrus. A laranja http://www.abecitrus.com.br/subprobr.html. Consultado em 15/01/2004.

Barret, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distribuitions in porous substances. I. Computations from nitrogen isothermas. Journal of the American Chemical Society, 73: 373-379, 1951.

Berlin, E.; Howard, N.M.; Pallansch, M.J. Surface surface areas of milk powders produced by different drying methods. 1964.

Bezerra, C.V.; Amante, E.R.; Oliveira, D.C.; Rodrigues, A.M.C.; Silva, L. H.M. Green banana (Musa cavendishii) flour obtained in spouted bed – Effect of drying on physico-chemical, functional and morphological characteristics of the starch. Industrial Crops & Products, 2013, v.41, p.241-249.

Brunauer, S.; Emmett, P.H.; Taylor, E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 60, 309-319, 1938.

Buckeridge, M.S., Tiné, M.A.S. Composição polissacarídica: estrutura da parede cellular e fibra alimentar. In: Lajolo, F.M.[et al.] Fibra Dietética en Iberoamérica: tecnología y salud: obtención, caracterización, efecto fisiológico y aplicación en alimentos. São Paulo: Livraria Varela, 2001, p.43-60.

Cadden, A.M. Moisture sorption characteristics of several food fibers. Journal of Food Science. 53(4) 1150-1155, 1980

Chesson, A.; Gardner, P.T.; Wood, T.J. Cell wall porosity and available surface area of wheat straw and wheat grain fractions. Journal Science Food Agricultural, 75, 289-295, 1997.

Gregg, S.J.; Sing, K.S.W. Adsorption. Surface Area and porosity. Academic Press. New York, 1982.

Guillon, F.; Champ, M. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International. 33, 233-245, 2000.

Helman, N.N.; Melvin, E.H. Surface area of starch and its role in water sorption. Journal of the American Chemical Society. 72, 5186-5188, 1938.

Juszczak, L.; Fortuna, T.; Wodnicka, K. Characteristics of cereal starch granules surface using nitrogen adsorption. Journal of Food Engineering. 54, 103-110, 2002.

Karatanos, V.T.; Saravacos, G.D. Porosity and pore size distribuition of starch materials. Journal Food Engineering. 18 (3) 1993.

Larrauri, J.A. New approaches in the preparation of high dietary fibre powders from fruit by-products. Trends in Food Science & Technology. 10, 3-8, 1999.

Lowell, S.; Shields, J.E. Powder Surface Area and Porosity. 3.ed. London: Chapman & Hall, 1991.256p.

Orr, C. Poro size and volume determination. In: Fine Particles Processing. Americam Institut Mining, Metallurgical and Petroleum Engineers, New York, p.404-441, 1980.

Padilla, A.L. Análisis multivariado aplicado a procesos para el aprovechamiento de residuos agroindustralis de naranja (Citrus sinensis variedad valencia). Medelìn: Universidad de Antioquia, 2012. 188p. (Tese de Doutorado).

Rouqueirol, F.; Rouqueirol, J.; Sing, K. Adsorption by Powders and Porous Solids: principles, methodology and applications. Academic Press. Marceille – France, 1999. 467p.

Schoonman, A.; Mayor,G.; Dillmann, M.,; Bisperink, C.; Ubbink, J. The microstructure of foamed maltodextrin/ sodium caseinate powders: a comparative study by microscopy and physical techniques. Food Research International, v.34, p.913-929, 2001.

Sing, K.S.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouqueirol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems: with specil reference to the determination of surface area and porosity. Pure and Applied Chemistry. v.57, n.4, p.603-619, 1985.

Svarovsky, L. Powder Testing Guide Methods of Measuring the Physical Properties of Bulk Powders. London: British Materials Handling Board 1987. 146p.

Webb, P. A. Volume and density determinations for particle technologists. Micromeritics 2001 www.micromeritics.com acesso em 02/06/03

Webb, P.A.; Orr,C. Analytical methods in fine particle technology. Micromeritics instrument Corporation.

Włodarczyk-Stasiak, M.; Jamroz, J. Analysis of sorption properties of starch–protein extrudates with the use of water vapour. Journal of Food Engineering, v.85, p.580–589. (2008)