Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

An Agent-Based Simulation of Car Theft: Further Evidence of the Rational Choice Theory of Crime

DOI: http://dx.doi.org/10.18836/2178-0587/ealr.v4n1p103-119

http://portalrevistas.ucb.br/index.php/EALR/index 

downloadpdf

Luiz M. Berger1 & Denis Borenstein2

 

Resumo: Nos últimos anos o Brasil tem experimentado uma melhora de índices socioeconômicos e, simultaneamente, um problemático aumento da criminalidade urbana, seja contra a pessoa ou patrimônio, em especial com relação aos crimes de oportunidade. A aparente contradição desafia a comumente alegada correlação entre distribuição de riqueza e vários tipos de ofensa urbana. Aplicando-se o modelo baseado em agentes desenvolvido em Berger, Borenstein e Balbinotto Neto (2010), este artigo contribui para o debate por meio da avaliação da eficiência da polícia no combate ao crime de furto/roubo de veículos na cidade de Porto Alegre. Os resultados indicam que enquanto o policiamento ostensivo reduz a incidência do delito no curto prazo, seu efeito de longo prazo é inconclusivo.

Palavras-chave: Furto de Veículo; Escolha Racional; Simulação Computadorizada; Sistema de Multiagentes; Porto Alegre.

 

Abstract: In recent years Brazil has been experiencing an improvement in socioeconomic indexes and, simultaneously, a troubling increase in urban criminality, either against the person or property, particularly those related to the so-called crimes of opportunity. The apparent contradiction challenges common claims concerning the correlation between wealth distribution and various types of urban offences. Using the agent-based computational model of criminal behavior developed in Berger, Borenstein & Balbinotto Neto (2010), this paper contributes to the debate by assessing police efficiency towards car theft tackling in the city of Porto Alegre. Results reveal that although police presence inhibits criminal activity in the short run, the evidence is inconclusive in the long run.

Key words: Car-Theft; Rational Choice; Computerized Simulation; Multiagent Systems; Porto Alegre.

 

1 Federal University of Rio Grande do Sul. E-mail: bergerlm@gmail.com. O artigo contou com suporte da CAPES / CNPq.
2 Federal University of Rio Grande do Sul. E-mail: denis.borenstein@ufrgs.br.

 

Literatura Citada

Amann, E. & Baer, W. (2000). The Illusion of Stability: The Brazilian Economy Under Cardoso. World Development, 28(10), 1805-1819. http://dx.doi.org/10.1016/S0305-750X(00)00058-9

Auerhahn, K. (2008). Dynamic Systems Simulation Analysis: A Planning Tool for The New Century, Journal of Criminal Justice, 36, 293-300. http://dx.doi.org/10.1016/j.jcrimjus.2008.06.007

Averbug, A. (2002). The Brazilian Economy in 1994-1999: From Real Plan to Inflation Targets, The World Economy, 25(7), 925-944. http://dx.doi.org/10.1111/1467-9701.00472

Axtell, R. & Epstein, J.M. (1996). Growing artificial societies: Social Sciences from the Bottom Up. Cambridge: The MIT Press.

Barone, R. & Masciandaro, D. (2011). Organized Crime, Money Laundering and Legal Economy: Theory and Simulations. European Journal of Law and Economics, 32(1), 115-142. http://dx.doi.org/10.1007/s10657-010-9203-x

Barkan, Steven E. (2009). The Value of Quantitative Analysis for a Critical Understanding of Crime and Society, Critical Criminology, 17(4), 247-259. http://dx.doi.org/10.1007/s10612-009-9085-9

Becker, G. S. (1993). Nobel Lecture: The Economic Way of Looking at Behavior, The Journal of Political Economy,101(3), 385-409. http://dx.doi.org/10.1086/261880

Becker, G. S. (1976). The Economic approach to human behavior. Chicago: Chicago University Press.

Becker, G. S. (1968). Crime and punishment: an economic approach. Journal of Political Economy, 2(76), 169-217. http://dx.doi.org/10.1086/259394

Berger, L. M., Borenstein, D. & Balbinotto Neto, G. (2010). A Multiagent Method applied to the economic Analysis of Criminal Law, Economic Analysis of Law Review, 1(1), 165-178. http://dx.doi.org/10.18836/2178-0587/ealr.v1n1p165-178

Blumstein, A. (2002). Crime Modeling, Operations Research, 50(1). http://dx.doi.org/10.1287/opre.50.1.16.17794

Brand, S. & Price, R. (2000). The Economic and Social Costs of Crime. Home Office Research Study, 217. London: Crown Copyright. http://dx.doi.org/10.1037/e452672008-001

Clarke, R.V. (1980). Situational Crime Prevention: Theory and Practice, British Journal of Criminology, 20(2).

Clarke, R.V. (1995). Situational Crime Prevention. Crime and Justice, 19, 91-150. http://dx.doi.org/10.1086/449230

Clarke, R.V.(2009). Situational Crime Prevention: Theoretical Background and Current Pra ctice, in Handbook on Crime and Deviance, Krohn, M.D., Lizotte A.J. & Hall, G. P. (Eds.), Springer. http://dx.doi.org/10.1007/978-1-4419-0245-0_14

Cohen, L.E., Felson, M. (1979). Social Change and Crime Rate Trends: A Routine Activity Approach; American Sociological Review, 44, 588-608. http://dx.doi.org/10.2307/2094589

Cooter, R.D. & Ulen, T. (2011). Law and Economics (6th ed.). Addison Wesley, Longman.

Dressler, J. (2007). Cases and Materials on Criminal Law (4th ed.). American Casebooks Series, West.

Ehrlich, I. (1996). Crime, Punishment, and the Market for Offenses. The Journal of Economic Perspectives, 10(1), 43-67. http://dx.doi.org/10.1257/jep.10.1.43

Fajnzylber, P., Lederman, D. & Loayza, N. (2002). Inequality and Violent Crime. Journal of Law and Economics, XLV. http://dx.doi.org/10.1086/338347

Fang, K., Runze, L. & Sudjianto, A. (2006). Design and Modeling for Computer Experiments. Chapman & Hall/CRC (Taylor and Francis Group).

Felson, M., & Clarke, R.V. (1998). Opportunity Makes the Thief: Practical theory for crime prevention. Police Research Series, paper 98. Policing and Reducing Crime Unit Research, Development and Statistics Directorate, London.

Flynn, P. (1996). Brazil: the politics of the Plano Real, Third World Quaterly, 17(3), 401-426. http://dx.doi.org/10.1080/01436599615434

Frank, R., Dabbaghian, V., Reid, A., Singh, S., Cinnamon, J. & Brantingham, P. (2011). Power of Criminal Attractors: Modeling the Pull of Activity Nodes, Journal of Artificial Societies and Social Simulation, 14(1) 6. http://dx.doi.org/10.18564/jasss.1734

Garoupa, N. (ed.), (2009). Criminal Law and Economics in Encyclopedia of Law and Economics (2nd ed.), 3, Edward Elgar.

Gottfredson, M.R. & Hirschi, T. (1990). A General Theory of Crime. Stanford: Stanford University Press.

Garner, B.A. (Ed.) (2009). Black´s Law Dictionary (9th ed.). West-Thomson Reuters.

Groff, E. R. (2007). Simulation for Theory Testing and Experimentation: an Example Using Routine Activity Theory and Street Robbery. Journal of Quantitative Criminology, 23, 75-103. http://dx.doi.org/10.1007/s10940-006-9021-z

Groff, E. R. (2008). Adding the Temporal and Spatial Aspects of Routine Activities: A Further Test of Routine Activity Theory. Security Journal, 21, 95-116. http://dx.doi.org/10.1057/palgrave.sj.8350070

Hall, A. (2008). Brazil’s Bolsa Familia: A Double-Edge Sword? Development and Change, 39(5), 799-822. http://dx.doi.org/10.1111/j.1467-7660.2008.00506.x

IBGE Census 2010 (2012) Online Database, Brazilian Institute of Geography and Statistics. http://www.ibge.gov.br.

Kadish, S. H., Schulhofer, S. J. & Steiker, C. S. (2007). Criminal Law and its Processes: Cases and Materials (8th ed.). Aspen Publishers, Inc.

Kaplan, J., Weisberg, R. & Binder, G. (2012). Criminal Law: Cases and Materials (7th ed.). Aspen Casebook Series Publishers, Inc.

Law, A. M. (2007). Simulation Modeling and Analysis (4th ed.). New York: McGraw-Hill.

Lindert, K., Linder, A., Hobbs, J. & de la Briere, B. (2007). The Nuts and Bolts of Brazil’s Bolsa Familia Program: Implementing Conditional Cash Transfer in a Decentralized Context; Social Protection (SP) Discussion Paper No. 0709, The World Bank.

Liu, L. & Eck, J. (2008). Artificial Crime Analysis Systems; Using Computer Simulations and Geographic Information Systems. Hershey: Information Science Reference (IGI Global). http://dx.doi.org/10.4018/978-1-59904-591-7

Makowsky, M. (2006). An Agent-Based Model of Mortality Shocks, Intergenerational Effects, and Urban Crime. Journal of Artificial Societies and Social Simulation, 9(2).

Malleson, N., Heppenstall, A. & See, L. (2010). Crime reduction through simulation: An agentbased model of burglary. Computers, Environment and Urban Systems, 34, 236–250. http://dx.doi.org/10.1016/j.compenvurbsys.2009.10.005

Neumayer, E. (2005). Inequality and Violent Crime: Evidence from Data on Robbery and Violent Theft. Journal of Peace Research, 42(1), 101-112. http://dx.doi.org/10.1177/0022343305049669

Pavon, J., Arroyo, M., Hassan & S., Sansores, C. (2008). Agent-based modeling and simulation for the analysis of social patterns. Pattern Recognition Letters, 29, 1039–1048. http://dx.doi.org/10.1016/j.patrec.2007.06.021

Piquero, A.R. & Weisburd, D. (2011), Handbook of Quantitative Criminology (1st ed.). Springer.

Pitcher, A. B. & Johnson, S. D. (2011). Exploring Theories of Victimization: Using a Mathematical Model of Burglary. Journal of Research in Crime and Delinquency, 48, 83. http://dx.doi.org/10.1177/0022427810384139

Posner, R. A. (2011). Economic Analysis of Law (8th ed.). Aspen Casebook Series, Wolters Kluwer Editors.

Rauhut, H. & Junker, M. (2009). Punishment Deters Crime Because Humans Are Bounded in Their Strategic Decision-Making. Journal of Artificial Societies and Social Simulation, 12(3), 1.

Sachs, J. & Zini Jr., Á.A. (1996). Brazilian Inflation and the Plano Real. World Economy 19(1). http://dx.doi.org/10.1111/j.1467-9701.1996.tb00662.x

Sachsida, A., Mendonça, M.J.C., Loureiro, P.R.A. & Gutierrez, M.B.S. (2010). Inequality and Criminality Revisited: Further Evidence from Brazil. Empirical Economics, 39(1), 93-109, Springer. http://dx.doi.org/10.1007/s00181-009-0296-4

Scorzafave, L.G. & Soares, M.K.(2009). Income Inequality and Pecuniary Crimes. Economic Letters, 104(1), 40-42. http://dx.doi.org/10.1016/j.econlet.2009.03.021

Shannon, R.E. (1975). Systems Simulation: The Art and Science. Englewood Cliffs: Prentice-Hall.

Shavell, S. (2004). Foundations of Economic Analysis of Law. Cambridge: Harvard University Press.

Shavell, S. & Polinsky, A M. (2000). The economic theory of public enforcement of Law. Journal of Economic Literature, 38(1), 45-78. http://dx.doi.org/10.1257/jel.38.1.45

Schelling, T. Micromotives and macrobehavior (1978). New York: Norton.

Siegel, L. J. (2012). Criminology: Theories, Patterns and Typologies (11th ed.). Wadsworth Publishing.

Treisman, D. (2000). The Causes of Corruption: A Cross-National Study. Journal of Public Economics, 76, 399-457. http://dx.doi.org/10.1016/S0047-2727(99)00092-4

Waiselfisz, J. J. (2012a), Mapa da Violência 2012, Os Novos Padrões da Violência no Brasil (in Portuguese). São Paulo: Instituto Sangari.

Waiselfisz, J. J. (2012b), Mapa da Violência 2012, Crianças e Adolescentes do Brasil, (in Portuguese). Rio de Janeiro: CEBELA (Centro Brasileiro de Estudos Latino-Americanos), FLACSO Brasil (www.flacso.org.br).

Wilensky, U. (1999). Center for Connected Learning and Computer-Based Modeling. Evanston: Northwestern University. Available at: http://ccl.northwestern.edu/netlogo/.

Wilhite, A. & Allen, D.W. (2008). Crime, Protection and Incarceration. Journal of Economics Behavior & Organization, 67, 481-494. http://dx.doi.org/10.1016/j.jebo.2006.10.013

Zimring, F. E. (2008). Criminology and its Discontents. Criminology, 46 (2). http://dx.doi.org/10.1111/j.1745-9125.2008.00109.x

Zimring, F. E. (2007). The Great American Decline. New York: Oxford University Press.