Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Secagem Osmótica de Tomate: Efeito da Epiderme

DOI: http://dx.doi.org/10.15871/1517-8595/rbpa.v5n3p77-84

http://rbpaonline.com/ 

downloadpdf

Mario E. R.M. C. Mata1, Maria E. D. Braga1 & Robert K. Kross2

 

Resumo: O tomate é uma das hortaliças mais cultivadas e consumidas no mundo, daí sua importância econômico e industrial, pois emprega um grande contingente de mão-de-obra, além de estar diariamente ligada a dieta alimentar da maioria da população. Dada a alta perecibilidade do produto, novos processos de industrialização do tomate têm sido pesquisados, objetivando a redução das elevadas perdas pós-colheita. Um dos produtos que vem alcançando grande interesse comercial são os tomates secos em conserva, no entanto os tratamentos osmóticos que causa uma pequena secagem ao produto, as diferentes concentrações da solução osmótica e o efeito da epiderme, necessitam de uma melhor investigação. Assim sendo, o presente trabalho teve como objetivo estudar os tomates com epiderme e tomates sem epiderme, quando submetidos a tratamentos osmóticos nas soluções de cloreto de sódio (NaCl) e sacarose nas concentrações de 5/0,4%, 10/0,4% e 15/0,4%; a uma temperatura ambiente de 25 10C. Como conseqüência deste tratamento os tomates sofrem uma pequena secagem. A redução de contudo de água dos tomates com epiderme e sem essa epiderme foram acompanhados por meio de uma balança analítica e o ganho de soluto por meio de titulação direta. Para representar o processo de secagem foi utilizado o modelo empírico proposto por Page, (U-Ue/Uo-Ue=C.exp(-Ktn)). Concluiu-se neste trabalho que existe o efeito da epiderme e que o tempo para que ocorra a secagem osmótica no tomate sem epiderme é praticamente a metade do que ocorre no tomate com epiderme e que, a quantidade de remoção de água e de entrada de sal, decresce gradualmente com o aumento do tempo e cresce com o aumento da concentração.

Palavras-chave: pré-secagem, tomate seco, concentração osmótica

 

Abstract: The tomato is one of the most cultivated and consumed vegetables in the Word, so that, is hás economic and industrial importance. It s necessary a lot of people to Word and the tomato is present on the majority of people s alimentary diet. New processes of industrialization of the tomato have been searched to reduce the large los after the crop because of it s very perishable. The dried in preserve tomatoes have getting a big commercial interest. However, it s necessary a better investigation of the osmotic treatments, which provoke a little drying on the product, the different concentration of the osmotic solution and the epidermis effect. Therefore, this work has the objective of studying the tomatoes with epidermis and without it when they are submitted to osmotic treatments at the solutions of sodium chloride (NaCl) and sucrose at the concentration of 5/0,4%, 10/0,4% e 15/0,4%; at the temperature of 25 10C. The tomatoes dry a little as consequence of this treatment. A reduction of the water content of the tomatoes wit epidermis and without it was accompanied by an analytic scale and the solute gain through the direct titratation. Page s empiric model (U-Ue/Uo-Ue = C.exp(-Ktn)) was used to represent the drying process. It has conclude that the epidermis effect exists and the time to the osmotic drying happen at the tomato without epidermis is practically the half one of the tomato with epidermis. The quantity of water removal and of entrance of salt, decrease gradually with the time increase and it increases with the increase of the concentration.

Key words: osmotic drying, conventional drying, Page equation

 

1 Químico Industrial , Mestre em Engenharia Agrícola da UFCG
2 Professor Dr do Departamento de Engenharia Agrícola da UFCG

  

Literatura Citada

A.O.A.C. Association of Official Analytical Chemists. Official methods of analysis of AOAC international, 16.ed. Gaitherburg: Patricia Cunniff, 1997. v.2, 1141p.

Baroni, A. F.; Hubinger, M. D. Drying of Onion: Effects of pretreatment on Moisture Transport. Drying Technology. New York, v. 16, p. 2083-2094, 1998 https://doi.org/10.1080/07373939808917513

Biswal, R.N.; Bozorgmehk, K. Mass transfer in mixed solute osmotic dehydration of apple rings. Trans. of ASAE, v.35, n.1, p.257- 265, 1991. https://doi.org/10.13031/2013.28597

Bolin, H.R. Effect of osmotic agents and concentration of green beans prior to freezing. Journal of Food Science. v.2, p.202-205, 1983 https://doi.org/10.1111/j.1365-2621.1983.tb14823.x

Finzer,. J.R.D; Limaverde, J.R. Influencia da pressão osmótica na desidratação de milho verde. In: Congresso Brasileiro de Sistemas Particulados-ENEMP, 24. Uberlândia, Anais Uberlandia: UFU, p.243-246, 1996.

Hawkes, J; Flink, J.M. Osmotic concentration of fruit prior to freeze dehydration. Journal of Food Processing and Preservation. v.1, p.265-284, 1978 https://doi.org/10.1111/j.1745-4549.1978.tb00562.x

Isse, M.G; Schubert, H. Osmotic dehydration of mango: mass transfer between mango and syrup. In: World Congress of Chemical Engineering, 4. Germany, Annals 1991.

Kowalska, H; Lenart, A. Mass transfer during osmotic dehydration of plant tissue. In: Seminar, properties of water in food, 9. Warsaw, Proceedings... 1998.

Kross, R.K; Cavalcanti Mata, M.E.R.M; Braga, E.M. Influência da epiderme do tomate(Licopersicon Esculentum L.) na transferência de massa durante o tratamento osmótico. Simpósio Latino Americano de Ciência de Alimentos (SLACA), 4. Campinas, Anais... Campinas: UNICAMP, 2001.

Lazarides, H. N., Reasons and possibilities to control solids uptake during osmotic treatment of fruits and vegetables. In.: Osmotic Dehydration & Vacuum Impregnation. USA, 2001. https://doi.org/10.1201/9781420031836.ch4

Pakowski, Z.; Gou, P; Comaposada, J; Arnau, J. Simultaneous diffusion of water and Nacl in meat during drying, International Drying Symposium, Holland, 2000 (CD-ROM).

Ranganna, S. Handbook of analyses and quality control for fruit and vegetable products. Tata McGraw Hill, New Delhi, 1986.

Raoult-Wack, A.L. Recent Advances in the osmotic dehydration of foods. Trends in Food Science and Technology. v.1, p.255- 260, 1994. https://doi.org/10.1016/0924-2244(94)90018-3

Rastogi, N.K; Raghavarao, K.S.M.S. Water and solute diffusion coefficients of carrot as afunction of temperature and concentration during osmotic dehydration. Journal of Food Engineering. Great Britain, v.34, p.429-440, 1997. https://doi.org/10.1016/S0260-8774(98)80034-4

Saurel, R. Deshydratation impregnation par immersion en solutions ternaíres: Etude des transports d´cau et de solutes sur gel et produits dórganic animale. PhD thesis, Universite de Montpellier II, 1995.

Sereno, A. M.; Moreira, R.; Martinez, E. Mass transfer coefficients during osmotic dehydration of apple in single and combined aqueos solutions of sugar and salt. Journal of Food Engineering. Great Britain, v. 47, p.43-49, 2001. https://doi.org/10.1016/S0260-8774(00)00098-4

Simal, S; Sánchez, E.S.; Bon, J.; Femenia, A.; Rosseló, C. Water and salt diffusion during cheese ripening: effect of the external and internal resistances to mass transfer. Journal of Food Engineering. Great Britain, v.48, p.269-275, 2001. https://doi.org/10.1016/S0260-8774(00)00169-2