Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Transições de Fases em Alimentos: Influência no Processamento e na Armazenagem

DOI: http://dx.doi.org/10.15871/1517-8595/rbpa.v7n1p83-96

http://rbpaonline.com/ 

downloadpdf

Juliana T. de C. Leite1, Fernanda E. X. Murr2 & Kil J. Park2

 

Resumo: Alimentos são compostos por uma combinação de diferentes componentes e, por essa razão, geralmente existem em um estado de não-equilíbrio amorfo. A transição vítrea é a principal transição de fases observada em componentes amorfos e, portanto, a mais comum em alimentos. A transição vítrea em materiais amorfos ocorre em uma faixa de temperaturas, mas geralmente é associada a um único valor – a temperatura de transição vítrea (Tg). Essa temperatura varia com a composição dos alimentos, principalmente com a concentração de água. O conhecimento do comportamento da temperatura de transição vítrea em função da umidade dos alimentos é essencial para a determinação das melhores condições de processamento e armazenagem dos alimentos.

Palavras-chave: transição vítrea, diagramas de estado, atividade de água, plastificação pela água.

 

Abstract: Food is composed by a combination of several components and, for this reason, generally in at a non-equilibrium amorphous state. The glass transition is the main phases transition observed at amorphous materials; therefore it is the most common in food materials. The glass transition in amorphous materials occurs at a range of temperatures, but it is often referred to the single temperature value – the glass transition temperature (Tg). This temperature varies with the food composition, mainly with the water content. The knowledge of the glass transition temperature behavior in function of the food moisture content is very important to determine the best conditions for food processing and storing.

Key words: glass transition, phase diagrams, water activity, plasticizing by water.

 

1 Doutoranda em Engenharia de Alimentos Departamento de Engenharia de Alimentos – Faculdade de Engenharia de Alimentos – Universidade Estadual de Campinas. Caixa Postal 6121. CEP: 13083-970. Campinas-SP, Brasil. E-mail: juliana@agr.unicamp.br 2 Professora - Departamento de Engenharia de Alimentos – Faculdade de Engenharia de Alimentos – Universidade Estadual de Campinas. Caixa Postal 6121. CEP: 13083-970. Campinas-SP, Brasil. E-mail: fexmurr@fea.unicamp.br
3 Professor Titular - Faculdade de Engenharia Agrícola – Universidade Estadual de Campinas. Caixa Postal 6011. CEP: 13084-971. Campinas-SP, Brasil. E-mail: kil@agr.unicamp.br

 

Literatura Citada

Baroni, A. F. Propriedades mecânicas, termodinâmicas e de estado de tomate submetido à desidratação osmótica e secagem. Campinas, 2004. 226f. Tese (Doutorado em Engenharia de Alimentos) – Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas.

Bhandari, B. R.; Datta, N.; Howest, T. Problems associated with spray drying of sugar-rich foods. Drying Technology. New York. v.15, n.2, p.671-684. 1997. https://doi.org/10.1080/07373939708917253
 
Chirife, J.; Iglesias, H. A. Equations for fitting water sorption isotherms of foods: Part 1. Journal of Food Technology. v. 13, n.3, p.159-174. 1978. https://doi.org/10.1111/j.1365-2621.1978.tb00792.x

Couchman, P. R.; Karasz, F. E. A classical thermodynamic discussion of the effect of composition on glass transitions temperatures. Macromolecules. v.11, n.1, p.117-119. 1978. https://doi.org/10.1021/ma60061a021

Downton, G. E.; Flores-Luna, J. L.; King, C. J. Mechanism of stickness in hygroscopic amorphous powders. Industrial and engineering chemistry: fundamentals. v.21, n.4, p.447-451. 1982. https://doi.org/10.1021/i100008a023

Ferry, J. D. Viscoelastic properties of polymers, 3rd edition, New York: John Wiley & Sons Inc, 1980.

Franks, F. Water – a comprehensive Treatise. New York: Ed. Plenum, 1972.

Franks, F.; Asquith, M. H.; Hammond, C. C.; Skaer, H. B.; Achlin, P. Polymeric cryoprotectants in the preservation of biological ultrastructure I. Low temperature states of aqueous solutions of hydrophilic polymers. Journal of Microscopy-Oxford. v. 110, n.Aug, p.223-238. 1977. apud Roos, Y. H. Phase transitions in foods. San Diego, California: Academic Press, 1995.

Gordon, M.; Taylor, J. S. Ideal copolymers and the second-order transitions of syntetic rubbers. I. Non-crystalline copolymers. Journal of Applied Chemistry. v.2, n.9, p.493-500. 1952. apud Zimeri, J. E.; Kokini, J. L. Phase transitions of inulinwazy maize starch systems in limited moisture environments. Carbohydrate Polymers. v.51, n.2 , p.183-190. 2003.

Hyman, C. Labuza, T. P. Moisture migration in multidomain systems. Trends in Food Science and Technology. v.9, n.2, p. 4755. 1998.

Jouppila, K.; Roos, Y. H. Glass transitions and crystallization in milk powders. Journal of Dairy Science. v.77, n.10, p.2907-2915. 1994.  https://doi.org/10.3168/jds.S0022-0302(94)77231-3

Katz, E. E.; Labuza, T. P. Effect of water activity on the sensory crispness and mechanical deformation of snack food products. Journal of Food Science. v.46, n.2, p. 403-409. 1981. https://doi.org/10.1111/j.1365-2621.1981.tb04871.x

Kauzmann, W. The nature of glassy state and the behavior of liquids at low temperatures. Chemical Reviews. v. 43, n. 2, p. 219-256. 1948. https://doi.org/10.1021/cr60135a002

Kim, M. N.; Saltmarch, M.; Labuza, T. P. Nonenzymatic browning of hygroscopic whey powders in open versus sealed pouches. Journal of food processes preservation. Westport. v.5, n.1, p. 49-57. 1981.

Labuza, T.; Roe, K.; Payne, C.; Panda, F.; Labuza, T. J.; Labuza, P. S.; Krusch, L. Storage stability of dry food systems: influence of state changes during drying and storage. In: International Drying Symposium IDS’2004, 14th, 2004, São Paulo, Brazil. Proceedings...São Paulo: Ourograf Gráfica e Editora, 2004. v. A, p. 48-68.

Labuza, T. P. The effect of water activity on reactions kinetics of food deterioration. Food Technology. v.34, n.4, p. 36-59, 1980.

Labuza, T. P.; Tannenbaum, S. R.; Karel, M. Water content and stability of low-moisture and intermediate-moisture foods. Food Technology. v.24, n.5, p. 543-544, 546548, 550. 1970.

Levine, H.; Slade, L. Influences of the glassy and rubbery states on thermal, mechanical and strcutural properties of dough and baked products. In: FARIDI, H.; Faubion, J. M. (Ed.). Dough rheology and baked products texture. New York: Van Nostrand Reinhold/AVI, 1990. 605p. https://doi.org/10.1007/978-1-4613-0861-4_5

Rasmussen, D; Luyet, B. Complementary study of some nonequilibrium phase transitions in frozen solutions of glycerol, ethylene glycol, glucose and sucrose. Biodynamica. v.10, n.220, p.319-331. 1969 apud ROOS, Y. H. Phase transitions in foods. San Diego, California: Academic Press. 1995.

Roos, Y. H. Phase transitions in foods. San Diego, California: Academic Press. 1995.

Roos, Y. H. Characterization of food polymers using state diagrams. Journal of Food Engineering. San v.24, n.3, p. 339-360. 1995.

Roos, Y. H. Water activity and physical state effects on amorphous food stabilty. Journal of food processes and preservation. v. 16, n. 6, p. 433-447. 1993. https://doi.org/10.1111/j.1745-4549.1993.tb00221.x

Roos, Y. H. Effect of moisture on the thermal behavior of strawberries studied using differential scanning calorimetry. Journal of Food Science. v.52, n.1, p.146-149. 1987. https://doi.org/10.1111/j.1365-2621.1987.tb13992.x

Roos, Y.; Karel, M. Crystallization of amorphous lactose. Journal of Food Science. Chicago. v.57, n.3, p. 775-777. 1992. https://doi.org/10.1111/j.1365-2621.1992.tb08095.x

Roos, Y.; Karel, M. Amorphous state and delayed ice formation in sucrose solutions. International Journal of Food Science and Technology. v.26, n.6, p.553-566. 1991a. https://doi.org/10.1111/j.1365-2621.1991.tb02001.x

Roos, Y.; Karel, M. Applying state diagrams to food processing and development. Food Technology. v.45, n.12, p.66-71. 1991b.

Roos, Y.; Karel, M. Phase transitions of mixtures of amorphous polysaccharides and sugars. Biotechnology Progress. v. 7, n.1, p.49-53. 1991c. https://doi.org/10.1021/bp00007a008

Roos, Y.; Karel, M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. Journal of food science. v.56, n.1, p. 38-43. 1991d. https://doi.org/10.1111/j.1365-2621.1991.tb07970.x

Roos, Y.; Karel, M. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrates solutions. Journal of Food Science. v.56, n.6, p.1676-1681. 1991e. https://doi.org/10.1111/j.1365-2621.1991.tb08669.x

Roos, Y. H.; Karel, M. Kokini, J. L. Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technology. v. 5, n.11, p.95-108. 1996

Saltmarch, M.; Labuza, T. P. Influence of relative humidity on the physicochemical state of lactose in spray-dried sweet way powders. Journal of Food Science. v. 45, n.5, p.1231-1236 & 1242. 1980.

Shimada, Y.; Roos, Y.; Karel, M. Oxidation of methyl linoleate encapsulated in amorphous lactose-based food model. Journal of agricultural and food chemistry. Washington. v.39, n.4, p.637-641. 1991.

Simatos, D.; Karel, M. Characterization of the condition of water in foods – physicochemical aspects. In: SEOW, C. C. Food Preservation by water activity. Amsterdam: Elsevier, 1988. pp. 1-41.

Slade, L.; Levine, H. Non-equilibrium behavior of small carbohydrate systems. Pure and Applied Chemistry. v.60, n. 12, p.1841-1864. 1988. https://doi.org/10.1351/pac198860121841

Slade, L.; Levine, H. A food polymer science approach to selected aspects of starch gelatinization and retro degradation in Frontiers. In: Millane, R. P.; Bemiller, J. N.; Chandrasekaran, R. (Ed). Carbohydrate Research 1, Food Applications. London: Elsevier Applied Science. 1989. pp.215270.

Slade, L.; Levine, H. Beyond water activity: recente advances based on an alternative approach to the assessmentof food quality and safety. Critical Reviews in Food Science and Nutrition. v.30, n.2-3, p. 115360. 1991. https://doi.org/10.1080/10408399109527543

Sobral, P. J. A; Menegalli, F. C. Transição vítrea em gelatina de couro bovino. Boletim da sociedade brasileira de ciência e tecnologia de alimentos. Campinas. v.36, n.1, p.35-42. 2002.

Sperling, L. H. Introduction to physical polymer science. 3rd edition. New York: Wiley-Interscience, 1992.

White, G. W.; Cakebread, S. H. The glassy state in certain sugar-containing food products. Journal of food technology. v.1, n.1, p. 73-82. 1966 https://doi.org/10.1111/j.1365-2621.1966.tb01031.x

Wunderlich, B. Thermal Analysis. Boston: Academic Press. 1990.

Zimeri, J. E.; Kokini, J. L. Phase transitions of inulin-wazy maize starch systems in limited moisture environments. Carbohydrate Polymers. v.51, n.2, p.183-190. 2003. https://doi.org/10.1016/S0144-8617(02)00127-3

Zimeri, J. E.; Kokini, J. L. The effect of moisture content on the crystallinity and glass transition temperature of inulin. Carbohydrate Polymers. v.48, n.3, p.299304. 2002. https://doi.org/10.1016/S0144-8617(01)00260-0