Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Evaluation of Mathematical Models for Prediction of Thinlayer Drying of Brazilian Lemon-Scented Verbena Leaves (Lippia alba (Mill) N.E. Brown)

DOI: http://dx.doi.org/10.15871/1517-8595/rbpa.v9n1p73-82

http://rbpaonline.com/ 

downloadpdf

Fabrízio da F. Barbosa1, Evandro de C. Melo2, Ricardo H. S. Santos3, Ronicely P. da Rocha4, Ana P. Martinazzo5, Lauri L. Radünz6 & Luis M. N. Gracia7

  

Abstract: The drying target is to reduce the moisture content and thereby increase the life time of products by limiting enzymatic and oxidative degradation. In addition, by reducing the amount of water, the percentages of active principles are increased in relation to the total mass. The aim of the current study was to determine the correct diffusion rate and activation energy by adapting the mathematical model according to the experimental data. Brazilian lemon-scented verbena leaves were harvested with a moisture content of around 85% wet basis (wb), and were then subjected to drying in a medicinal plant dryer at an air temperatures of 40, 50, 60, 70 and 80 ºC at 0.29±0.03 m.s-1. Approximately 400 g of leaves at a layer thickness of 0.15m were used with three tests performed at each temperature. Several models of drying kinetics were adapted for use with the experimental data, including Henderson & Pabis, Henderson & modified Pabis, Lewis, Midilli et al., Page, Thompson and Wang & Singh. The adjusted determination coefficients (R2), relative mean errors (P), estimated errors (SE) and residue distributions were all compared. The best models, which best represented the Brazilian lemon-scented verbena drying, were Midilli et al. and Page. The calculated effective diffusivity coefficients ranged from 2.91x10-12 to 11.71 x 10-12 m2.s-1 for the studied temperature range. The activation energy for the diffusion of water was 31.79 kJ.mol-1.

Key words: activation energy, effective diffusivity, medicinal plants, aromatic plants, kinetics.

 

Resumo: A secagem visa a redução do teor de água, aumentando o tempo de conservação dos produtos pela diminuição da degradação enzimática e oxidativa. Além disso, com a redução da quantidade de água, aumenta-se o percentual de princípios ativos em relação à massa total. Com o objetivo de determinar a difusividade efetiva, a energia de ativação e ajustar modelos matemáticos aos dados experimentais, folhas de erva-cidreira-brasileira, colhidas com teor de água em torno a 85 %b.u. foram submetidas à secagem em secador de plantas medicinais, com ar em temperatura de 40, 50, 60, 70 e 80 ºC e velocidade de 0,29+0,03 m.s-1. Para cada teste de secagem foram utilizadas 400 g de folhas em camada de 0,15 m de espessura, sendo realizados três testes para cada temperatura. Aos dados experimentais foram ajustados diversos modelos de cinética de secagem, dentre eles, Henderson & Pabis, Henderson & Pabis modificado, Lewis, Midilli et al., Page, Thompson e Wang & Singh. Comparando-se os coeficientes de determinação ajustados (R2), os erros médios relativo (P) e estimado (SE) e a distribuição de resíduos, concluiu-se que os modelos de Page e Midilli et al. foram os que representaram melhor a secagem de erva-cidreira-brasileira. Os coeficientes de difusividade efetiva calculados variaram entre 2,91x10-12 e 11,71x10-12 m2.s-1 para a faixa de temperatura estudada. A energia de ativação para difusão da água foi de 31,79 kJ.mol-1.

Palavras-chave: energia de ativação, difusividade efetiva, plantas medicinais, plantas aromáticas, cinética.

 

1 Professor, Universidade Estadual do Rio Grande do Sul, Porto Alegre, RS, 90.010-191, Brazil, phone: 55 51 3288-9000, E-mail: fabriziobarbosa@yahoo.com.br
2 Professor, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil, phone: 55 31 3899-1873, E-mail: evandro@ufv.br
3 Professor, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil, phone: 55 31 3899-1146, E-mail: rsantos@ufv.br
4 Doctor age grad student in Agriculture Engineering, Scholarship from CNPq, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil, phone: 55 31 3899-1873, E-mail: ronyrocha@yahoo.com.br
5 Professor, Universidade Federal Fluminense, Niterói, RJ, 24220-900, Brazil, phone: 55 21 2629-5000, E-mail: anapaulamartinazzo@gmail.com
6 Professor, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, 99.700 000, Brazil, phone: 55 54 3321-1943, E-mail: laurilr@gmail.com
7 Professor, Universidad de Valladolid, Palencia, Spain.

 

Literatura Citada

Andrade, E.T.; Borém, F.M.; Hardoim, P.R. Cinética de secagem do café cereja, bóia e cereja desmucilado, em quatro diferentes tipos de terreiros. Revista Brasileira de Armazenamento, especial café, n.7, p.37-43, 2003.

ASAE Standards. Standards engineering practices data. Adopted and published by: American Society of Agricultural Engineers, 2000. p.565-565.

Azzouz, S.; Guizani, A.; Jomaa, W.; Belghith, A. Moisture diffusivity and drying kinetic equation of convective drying of grapes. Journal of Food Engineering, v.55, n.4, p.323-330, 2002. https://doi.org/10.1016/S0260-8774(02)00109-7

Babalis, S.J.; Belessiotis, V.G. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of Food Engineering, v.65, n.3, p.449-458, 2004. https://doi.org/10.1016/j.jfoodeng.2004.02.005

Balladin, D.A.; Headley, O. Evaluation of solar dried thyme (Thymus vulgaris L.) herbs. Renewable Energy, v.17, n.4, p.523-531, 1999. https://doi.org/10.1016/S0960-1481(98)00757-5

Bruce, D.M. Exposed-layer barley drying, three models fitted to new data up to 150 ºC. Journal of Agricultural Engineering Research, v.32, p.337-348, 1985. https://doi.org/10.1016/0021-8634(85)90098-8

Buggle, V.; Ming, L.C.; Furtado, E.L; Rocha, S.F.R.; Marques, M.O.M. Influence of different drying temperatures on the amount of essential oils and citral content in Cymbopogon citrates (DC) Stapf. Poaceae. Acta Horticulturae, v.500, n.1, p.71-74, 1999. https://doi.org/10.17660/ActaHortic.1999.500.8

Charles, D.J.; Simon, J.E; Shock, C.C.; Feibert, E.B.G.; Smith, R.M. Effect of water stress and post-harvest handling on artemisinin content in the leaves of Artemisia anuua L. In: Janick and J. E. Simon (eds.), New Crops. Wiley, New York, 1993. p.628-631.

Corrêa, P.C.; Afonso-júnior, P.C.; Martins, P.M.; Melo, E.C.; Radünz, L.L. Modelo matemático para representação da higroscopicidade de plantas medicinais. Revista Brasileira de Armazenamento, v.27, n.1, p.8-15, 2002.

Deans, S.G.; Svoboda, K.P. Effects of drying regime on volatile oil and microflora of aromatic plants. Acta Horticulturae, v.306, n.4, p.450-452, 1992. https://doi.org/10.17660/ActaHortic.1992.306.60

Doymaz, I. Convective air characteristics of thin layer carrots. Journal of food Engineering, v.61, n.3, p.359-364, 2004. https://doi.org/10.1016/S0260-8774(03)00142-0

Doymaz, I. Drying behaviour of green beans. Journal of food Engineering, v.69, n.2, p.161-165, 2005 b. https://doi.org/10.1016/j.jfoodeng.2004.08.009

Doymaz, I. Drying characteristics and kinetics of okra. Journal of food Engineering, v.69, n.3, p.275-279, 2005 a. https://doi.org/10.1016/j.jfoodeng.2004.08.019

Draper, N.R.; Smith, H. Applied regression analysis. New York: Wiley series in probability and mathematical statistics, John Wiley & Sons, 1981. 709p.

Gomes, E.C.; Ming, L.C.; Moreira, E.A.; Miguel, O.G. Constituintes do óleo essencial de Lippia alba (Mill.) N. E. Br. (Verbenaceae). Revista Brasileira de Farmácia, v.74, n.2, p.29-32, 1993.

Gupta, P.; Ahmed, J.; Shivare, U.S.; Raghavan, G.S.V. Drying characteristics of red chilli. Drying Technology, v.20, n.6, p.1975-1987, 2002. https://doi.org/10.1081/DRT-120015579

Hansen, R.C.; Keener, H.M.; Elsohly, H.N. Thin-layer drying of cultivated Taxus clippings. Transaction of the ASAE, v.36, n.5, p.1387–1391, 1993. https://doi.org/10.13031/2013.28475

Henderson, S.M. Progress in developing the thin layer drying equation. Transactions of the ASAE, v.17, n.6, p.1167-1172, 1974. https://doi.org/10.13031/2013.37052

Henderson, S.M.; Pabis, S. Grain drying theory I. Temperature effect on drying coefficient. Journal of Agriculture Engineering Research, v.6, n.3, p.169- 174, 1961.

Karathanos, V.T. Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, v.39, n.4, p.337-344, 1999. https://doi.org/10.1016/S0260-8774(98)00132-0

Kassem, A.S. Comparative studies on thin layer drying models for wheat. In 13th International Congress on Agricultural Engineering, 25, 1998, Rabat - Morocco. Anais… Rabat - Morrocco: 1998. v.6, p.2-6, 1998.

Kaymak-ertekin, F.; Gedik, A. Kinetic modeling of quality deterioration in onions during drying and storage. Journal of Food Engineering, v.68, n.4, p.443-453, 2005. https://doi.org/10.1016/j.jfoodeng.2004.06.022

Kitic, D.; Viollas, P.E. Comparison of drying kinetic of soybeans in thin layer and fluidized beds. Journal of food Technology, v.19, n.3, p.399-408, 1984. https://doi.org/10.1111/j.1365-2621.1984.tb00364.x

Lewis, W.K. The rate of drying of solids materials. The Journal of Industrial and Engineering Chemistry, v.13, n.5, p.427-432, 1921. https://doi.org/10.1021/ie50137a021

Madamba, P.S; Driscoll, R.H.; Buckle, K.A. Thin layer drying characteristics of garlic slices. Journal of Food Engineering, v.29, n.1, p.75-97, 1996. https://doi.org/10.1016/0260-8774(95)00062-3

Martins, P.M. Influência da temperatura e da velocidade do ar de secagem no teor e na composição química do óleo essencial de capim-limão (Cymbopogon citratus (D.C.) Stapf). Viçosa: UFV/DEA, 2000. 77p. (Tese de Mestrado)

Matos, F.J.A.; Machado, M.I.L.; Craveiro, A.A.; Alencar, J.W. The essential oil composition of two chemotypes of Lippia alba grown in Northeast Brazil. Journal of Essential Oil Research, v.8, n.6, p.695-698, 1996. https://doi.org/10.1080/10412905.1996.9701047

Midilli, A.; Kucuk, H.; Vapar, Z. A new model for single-layer drying. Drying Technology, v.20, n.7, p.1503-1513, 2002. https://doi.org/10.1081/DRT-120005864

Mohapatra, D.; Rao, P.S. A thin layer drying model of parboiled wheat. Journal of Food Engineering, v.66, n.4, p.513-518, 2005. https://doi.org/10.1016/j.jfoodeng.2004.04.023

Page, G.E. Factors influencing the maximum rates of air drying shelled corn in thin layers. Indiana: Purdue University, USA, 1949. (Tese de Mestrado).

Panchariya, P.C.; Popovic, D.; Sharma, A.L. Thin-layer modeling of black tea drying process. Journal of Food Engineering, v.52, n.4, p.349-357, 2002. https://doi.org/10.1016/S0260-8774(01)00126-1

Park, K.J.; Brod, F.P.R.; Silva, J.E.A.R. Estudo comparativo de secagem de cebolinha (Allium sp. Cv. Galega) utilizando secadores vertical e horizontal. Revista Ciência e Tecnologia de Alimentos, v.16, n.2, p.143-145, 1996.

Park, K.J.; Vohnikova, Z.; Brod, F.P.R. Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.). Journal of Food Engineering, v.51, n.3, p.193-199, 2002. https://doi.org/10.1016/S0260-8774(01)00055-3

Park, K.J.; Yado, M.K.M.; Brod, F.P.R. Estudo de secagem de pêra bartlett (Pyrus sp.) em fatias. Ciência e Tecnologia de Alimentos, v.21, n.3, p.288-292, 2001. https://doi.org/10.1590/S0101-20612001000300007

Pascual, E.M.; Slowing, k.; Carretero, M.E.; Villar, A. Antiulcerogenic activity of Lippia alba (Mill.) N. E. Brown (Verbenaceae). II Farmaco, v.56, n.3, p.501-504, 2001. https://doi.org/10.1016/S0014-827X(01)01086-2

Pino, J.A.; Luis, A.G.O.; Pérez, A.R.; Jorge, M.R.; Baluja, R. Composición y propiedades antibacterianas del aceite esencial de Lippia alba (Mill.) n. e. Brown Revista Cubana Farmácia, v.30, n.1, P.1-7, 1997.

Radünz, L.L. Efeito da temperatura do ar de secagem no teor e na composição dos óleos essenciais de guaco (Mikania glomerata sprengel) e hortelã-comum (Mentha x villosa huds). Viçosa: UFV/DEA, 2004. 90p. (Tese de Doutorado).

Radünz, L.L.; Melo, E.C.; Berbert, P.A.; Barbosa, L.C.A.; Rocha, R.P.; Grandi, A.M. Efeitos da temperatura do ar de secagem sobre a qualidade do óleo essencial de alecrim pimenta (Lippia sidoides Cham). Revista Brasileira de Armazenamento, v.27, n.2, p.09-13, 2002.

Radünz, L.L.; Melo, E.C.; Berbert, P.A.; Barbosa, L.C.A.; Santos, R.H.S.; Rocha, R.P. Influência da temperatura do ar de secagem na quantidade do óleo essencial extraído de guaco (Mykania glomerata Sprengel). Revista Brasileira de Armazenamento, v.28, n.2, p.41-45, 2003.

Rehder, V.L.G.; Sartoratto, A.; Magalhães, P.M.; Figueira, G.M.; Júnior, M.; Lourenço, C. Variação fenológica do teor de cumarina em mikania laevigata Schultz Bip., ex Baker. In: Workshop de Plantas Medicinais, 1998, Botucatu, Anais…Botucatu: UNESP, 1998. p 28.

Reynolds, L.B. Effects of drying on chemical and physical characteristics of American ginseng (Panax quinquefolius L.). Journal of herbs, Spices and Medicinal Plants, v.6, n.2, p.9-21, 1998. https://doi.org/10.1300/J044v06n02_02

Rocha, S.F.R.; Ming, L.C.; Marques, M.O.M. Influência de cinco temperaturas de secagem no rendimento e composição do óleo essencial de citronela (Cymbopogon winterianus Jowitt). Revista Brasileira de Plantas medicinais, v.3, n.1, p.73-78, 2000.

Senadeera, W.; Bhandari, B.R.; Young, G.; Wijesinghe, B. Influence of shapes of selected vegetable materials on drying kinetics during fluidized bed drying. Journal of Food Engineering, v.58, n.3, p.277-283, 2003. https://doi.org/10.1016/S0260-8774(02)00386-2

Senatore, F.; Rigano, D. Essential oil of two Lippia spp. (Verbenaceae) growing wild in Guatemala. Flavour and Fragrance Journal, v.16, n.1, p.169-171, 2001. https://doi.org/10.1002/ffj.972

Sharaf-elden, Y.I.; Blaisdell, J.L.; Hamdy, M.Y. A model for ear corn drying. Transactions of the ASAE, v.5, n.4, p.1261-1265, 1980. https://doi.org/10.13031/2013.34757

Simal, S.; Femenía, A.; Llull, P.; Roselló, C. Dehydration of aloe vera: simulation of drying curves and evaluation of functional properties. Journal of Food Engineering, v.43, n.2, p.109-114, 2000. https://doi.org/10.1016/S0260-8774(99)00139-9

Simal, S.; Mulet, A.; Tarrazo, J.; Roselló, C. Drying models for green peas. Food Chemistry, p.55, n.2, p.121-128, 1996.

Souza, C.M.A.; Queiroz, D.M.; Lacerda, A.F. Simulação do processo de secagem de sementes de milho em camada fixa. Scientia Agrícola, v.59, n.4, p.653-660, 2002. https://doi.org/10.1590/S0103-90162002000400005

Tavares, E.S.; Lopes, D.S.; Bizzo, H.R..; Lage, C.L.S.; Leitão, S.G. Kinetin enhanced linalool production by in vitro plantlets of Lippia alba. Journal of Essential Oil Research, v.16, n.5, p.405- 408, 2004. https://doi.org/10.1080/10412905.2004.9698756

Temple, S.J.; Van Boxtel, A.J.B. Thin layer drying of black tea. Journal Agricultural Engineering Research, v.74, n.3, p.167-176, 1999. https://doi.org/10.1006/jaer.1999.0448

Thompson, T.L.; Peart, R.M.; Foster, G.H. Mathematical simulation of corn drying – a new model. Transactions of the ASAE, v.11, n.2, p.582-586, 1968. https://doi.org/10.13031/2013.39473

Togrul, I.T.; Pehlivan, D. Modelling of drying kinetics of single apricot. Journal of Food Engineering, v.58, n.1, p.23-32, 2003.  https://doi.org/10.1016/S0260-8774(02)00329-1

Vale, T.G.; Matos, F.J.A.; Lima, T.C.M.; Viana, G.S.B. Behavioral effects of essential oils from Lippia alba (Mill.) N.E. brown chemotypes Journal of Ethnopharmacology, v.167, n.1, p.127- 133, 1999. https://doi.org/10.1016/S0378-8741(98)00215-3

Venskutonis, P.R. Effect of drying on the volatile constituents of thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). Food Chemistry, v.59, n.2, p.219- 227, 1997. https://doi.org/10.1016/S0308-8146(96)00242-7

Wang, C.Y.; Singh, R.P. Use of variable equilibrium moisture content in modeling rice drying. Transactions of the ASAE, v.78, n.6, p.6505, 1978.

Zoghbi, M.G.B.; Andrade, E.H.A.; Santos, A.S.; Silva. M.H.L.; Maia, J.G.S.. Essential oils of Lippia alba (Mill.) N. E. Br. Growing Wild in the Brazilian Amazon. Flavour and Fragrance Journal, v.13, n.1, p.47-48, 1998. https://doi.org/10.1002/(SICI)1099-1026(199801/02)13:1%3C47::AID-FFJ690%3E3.0.CO;2-0