Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Fenômenos Relacionados a Fotoativação dos Compósitos Restauradores Odontológicos

DOI: http://dx.doi.org/10.18256/2238-510X/j.oralinvestigations.v3n1p10-16

https://seer.imed.edu.br/index.php/JOI/index 

downloadpdf

Ricardo D. Guiraldo1, Sandrine B. Berger1, Simonides Consani2, Rafael L. X. Consani3, Gustavo G. de Oliveira4, Wilson B. Mendes4

  

Resumo: Os compósitos odontológicos fotoativados por luz visível são os materiais odontológicos restauradores estéticos mais utilizados atualmente. Além disto, são matériais restauradores diretos, assim independem de trabalho laboratorial. Dentre suas vantagens estão o controle do tempo de presa e a estética, além de ser desnecessária a confecção do preparo cavitário retentivo, preservando assim a estrutura dental. Aumento da temperatura durante a polimerização pode ocorrer devido à energia de radiação fornecida pela unidade fotoativadora e reação exotérmica do compósito. Durante o processo de polimerização, o compósito sofre contração e, dependendo da velocidade da reação, essa contração pode gerar grande tensão na interface dente-restauração, desta maneira, promovendo o aparecimento de fendas e consequente falha da restauração. Além disso, para que o compósito apresente propriedades mecânicas adequadas, é necessário que ele atinja alto grau de conversão. O grau de conversão depende da quantidade de energia que é fornecida ao compósito, todavia o efeito da densidade de energia (irradiância x tempo de exposição) nas propriedades mecânicas dos compósitos odontológicos ainda não esteja bem evidenciado. Insuficiente polimerização da resina composta pode gerar grande número de problemas, tais como baixa estabilidade de cor, maior pigmentação e risco de agressão ao tecido pulpar pela não polimerização de monômeros e existência de parte do material com diferentes valores de módulo de Young.

Palavras-chave: Aumento da temperatura. Contração de polimerização. Grau de conversão.

 

Abstract: Nowadays, the photo-activated composites are the most used esthetic restorative dental materials in dentistry. In addition, they are direct restorative materials and independent of laboratory work. The advantages of these materials are the control of setting time and esthetic characteristics. Besides that, it’s unnecessary to retentive cavity and preserves the dental tissue. Temperature rise during polymerization may occur due to irradiance supplied by the light curing unit and composite exothermic reaction. Composites shrink during the polymerization reaction and a tension can be induced on restoration/tooth interface. Depending on composite/tooth interface bond strength, gaps can be formed in the restoration margins, leading to the failure of restorative procedure. For this reason, a high degree of conversion is necessary for composites to obtain adequate mechanical properties. The conversion degree depends on energy density supplied to composites. The effects of energy density (irradiance x exposure time) in mechanical properties of composites have not been satisfactory proved. Insufficiently polymerized composite resin may present quite a large number of problems, such as poor color stability, greater stain uptake, and risk of pulp aggression by non-polymerized monomers and portions of the material with different values of Young’s modulus.

Key words: Temperature rise. Polymerization shrinkage. Conversion degree.

 

1 Departamento de Odontologia Restauradora, Área Dentística Restauradora, Universidade Norte do Paraná (UNOPAR), Faculdade de Odontologia, Londrina, PR, Brasil
2 Departamento de Odontologia Restauradora, Área Materiais Dentários, Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba, Piracicaba, SP, Brasil
3 Departamento de Prótese e Periodontia, Área Prótese Total, Universidade Estadual de Campinas
4 (UNICAMP), Faculdade de Odontologia de Piracicaba, Piracicaba, SP, Brasil dFundação Universidade de Itaúna (FUIT), Faculdade de Odontologia, Itaúna, MG, Brasil

 

Literatura Citada

Bowen RL. Properties of silica-reinforced polymer for dental restorations. J Am Dent Assoc. 1963;66:57-64. https://doi.org/10.14219/jada.archive.1963.0010

Rueggeberg FA. From vulcanite to vinyl, a history of resins in restorative dentistry. J Prosthet Dent. 2002;87:376-9. https://doi.org/10.1067/mpr.2002.123400

Peutzfeldt A, Sahafi A, Asmusse E. Characterization of resin composites polymerized with plasma arc curing units. Dent Mater. 2000;16:330-6. https://doi.org/10.1016/S0109-5641(00)00025-7

Sahafi A, Peutzfeldt A, Asmussen E. Soft-start polymerization and marginal gap formation in vitro. Am J Dent. 2001;14:145-7.

Munksgaard EC, Peutzfeldt A, Asmussen E. Elution o TEGDMA and BisGMA rom a resin and a resin composite cured with halogen or plasma light. Eur J Oral Sci. 2000;108:341-5. https://doi.org/10.1034/j.1600-0722.2000.108004341.x

Anusavice KJ. Phillips’ Science of Dental Materials. 11ed Rio de Janeiro: Elsevier; 2005.

Harris JS, Jacobsen PH, O´Doherty DM. The effect of curing light intensity and test temperature on the dynamic mechanical properties o two polymer composites. J Oral Rehab. 1999; 26:635-9. https://doi.org/10.1046/j.1365-2842.1999.00432.x

Rueggeberg, F.A. Contemporary issues in photocuring. Compend Contin Educ Dent. 1999; 20:S4-S15.

Soh MS, Yap AU, Siow KS. Effectiveness of composite cure associated with different curing modes of LED lights. Oper Dent. 2003; 28:371-7.

Hansen EK, Asmussen E. Correlation between depth of cure and temperature rise of a light-activated resin. Scand J Dent Res. 1993;101:176-9. https://doi.org/10.1111/j.1600-0722.1993.tb01659.x

Shortall AC, Harrington E, Wilson HJ. Light curing unit effectiveness assessed by dental radiometers. J Dent. 1995;23:227-32. https://doi.org/10.1016/0300-5712(95)91187-R

Feilzer AJ, De Gre AJ, Davison CL. Setting tensão in composite resin in relation to configuration of the restoration. J Dent Res. 1987;66:1636-9. https://doi.org/10.1177/00220345870660110601

Consani S, Farina EDP, Guiraldo RD, Sinhoreti MAC, Correr-Sobrinho, L. Influence of shade and composition in the generation of heat during the dental composite photoactivation. Braz J Oral Sci. 2006; 5:1213-6.

Guiraldo RD, Consani S, Lympius T, Schneider LF, Sinhoreti MA, Correr-Sobrinho L. Influence of the light curing unit and thickness of residual dentin on generation of heat during composite photoactivation. J Oral Sci. 2008;50:137-42. https://doi.org/10.2334/josnusd.50.137

Guiraldo RD, Consani S, Sinhoreti MA, CorrerSobrinho L, Schneider LF. Thermal variations in the pulp chamber associated with composite insertion techniques and light-curing methods. J Contemp Dent Pract. 2009;10:17-24.

Pires-de-Souza Fde C, Drubi Filho B, Casemiro LA, Garcia Lda F, Consani S. Polymerization shrinkage stress of composites photoactivated by different light sources. Braz Dent J. 2009;20:319-24. https://doi.org/10.1590/s0103-64402009000400010

Guiraldo RD, Consani S, Consani RL, Berger SB, Mendes WB, Sinhoreti MA, Correr-Sobrinho L. Comparison of silorane and methacrylate-based composite resins on the curing light transmission. Braz Dent J. 2010;21:538-42. https://doi.org/10.1590/S0103-64402010000600010

Guiraldo RD, Consani S, Consani RL, Berger SB, Correr AB, Sinhoreti MA, Correr-Sobrinho L. Comparison of silorane and methacrylate-based composites on the polymerization heat generated with different light-curing units and dentin thicknesses. Braz Dent J. 2013;24:258-62. https://doi.org/10.1590/0103-6440201301904

Aleixo AR, Guiraldo RD, Fugolin AP, Berger SB, Consani RL, Correr AB, Gonini-Júnior A, Lopes MB. Evaluation of contraction stress, conversion degree, and cross-link density in low-shrinkage composites. Photomed Laser Surg. 2014;32:26773. https://doi.org/10.1089/pho.2013.3678

Peutzfeldt A. Resin composites in dentistry: monomer systems. Eur J Oral Sci. 1997;105:97-116. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x

Correr AB, Sinhoreti MA, Sobrinho LC, Tango RN, Schneider LF, Consani S. Effect of the increase of energy density on Knoop hardness of dental composites light-cured by conventional QTH, LED and xenon plasma arc. Braz Dent J. 2005;16:218-24. https://doi.org/10.1590/S0103-64402005000300009

Weinmann W, Thalacher C, Guggenberger R. Siloranes in dental composites. Dent Mater. 2005;21:68-74. https://doi.org/10.1016/j.dental.2004.10.007

Papadogiannis D, Kakaboura A, Palaghias G, Eliades G. Setting characteristics and cavity adaptation of low-shrinking resin composites. Dent Mater. 2009;25:1509-16. https://doi.org/10.1016/j.dental.2009.06.022

Marchesi G, Breschi L, Antoniolli F, Di Lenarda R, Ferracane J, Cadenaro M. Contraction stress of low-shrinkage composite materials assessed with different testing systems. Dent Mater. 2010;26:947-53. https://doi.org/10.1016/j.dental.2010.05.007

Unterbrink GL. Liebenberg WH. Flowable composites as “filled adhesives”. Literature review and clinical recommendations. Quintessente Int. 1999;30:249-57.

Suh BI, Feng L, Wang Y, Cripe C, Cincione F, de Rjik W. The effect of the pulse-delay cure technique on residual strain in composites. Compend Contin Educ Dent. 1999;20:4-12.

Obici AC, Sinhoreti MA, Goes MF, Consani S, Correr-sobrinho L. Effect of the Photo-activation meted on polymerization shrinkage of restorative composites. Oper Dent. 2002;27:192-7.

Zach L, Cohen G. Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol. 1965;19:515-30. https://doi.org/10.1016/0030-4220(65)90015-0

McCabe JF, Wilson HJ. The use of differential scanning calorimetry for the evaluation of dental materials. J Oral Rehabil. 1980;7:103-10. https://doi.org/10.1111/j.1365-2842.1980.tb00425.x

Uhl A, Mills RW, Jandt KD. Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials 2003;24:1809-20. https://doi.org/10.1016/S0142-9612(02)00585-9

McCabe JF. Cure performance of light-activated composites by differential thermal analysis ( DTA). Dent Mater. 1985;1:231-4. https://doi.org/10.1016/S0109-5641(85)80048-8

Schneider LF, Consani S, Sinhoreti MA, CorrerSobrinho L, Milan FM. Temperature change and hardness with different resin composites and photo-activation methods. Oper Dent. 2005;30:516-21.

Ferracane JL. Elution of leachable components from composites. J Oral Rehabil. 1994;21: 441-52. https://doi.org/10.1111/j.1365-2842.1994.tb01158.x

Guiraldo RD, Consani S, Sinhoreti MA, CorrerSobrinho L, Consani RL, Fugolin AP. Avaliação da densidade de potência e do espectro de luz de fotoativadores usados em consultórios odontológicos. Cienc Odontol Brás. 2008;11:86-90.

Christensen RP, Palmer TM, Ploeger BJ, Yost MP. Resin polymerization problems--are they caused by resin curing lights, resin formulations, or both? Compend Contin Educ Dent. 1999;25:S42-S54.