Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Phenotyping Soybeans for Drought Responses Using Remote Sensing Techniques and Non-Destructive Physiological Analysis

DOI: http://dx.doi.org/10.14688/1984-3801/gst.v8n2p1-16

http://rioverde.ifgoiano.edu.br/periodicos/index.php/gst/index 

downloadpdf

Josirley F. C. Carvalho1, Luis G. T. Crusiol1,2, Luiz J. Perini1, Rubson N. R. Sibaldelli3, Leonardo C. Ferreira1, Francismar C. M. Guimarães1, Alexandre L. Neponuceno1, Norman Neumaier1 & José R. B. Farias1

 

Abstract: Water deficit is the major abiotic factor that limits crop productivity. Climate changes are likely to exacerbate drought stresses in the future. In the present work, we investigated the feasibility of using the Normalized Difference Vegetation Index (NDVI) combined with the canopy temperature and other physiological characteristics, such as chlorophyll content and gas exchange, to monitor soybean (Glycine max L. Merrill) plants differing in their drought response under glasshouse conditions. Additionally, the drought responses of the cultivars Embrapa 48 and BR 16 were assessed under conditions of natural drought, water deficit simulated by sheltering the plants from rain at the vegetative and reproductive periods and irrigation at field conditions. Remote sensing techniques could be used to initially assess the drought responses of soybean plants under controlled conditions. Additionally, we observed the relationship between the NDVI and several physiological characteristics, such as chlorophyll content, photosynthesis, stomatal conductance and transpiration. Therefore, the combination between remote sensing techniques and the assessment of physiological traits of plant materials at the same developmental stage and leaf areas is useful to accurately monitor cultivars presenting different drought responses.

Key words: Glycine max L. Merrill, NDVI, water deficit

 

Resumo: xO déficit hídrico é o maior fator abiótico que limita a produtividade das culturas. As mudanças climáticas provavelmente agravarão os estresses hídricos no futuro. No presente trabalho, nós investigamos a viabilidade de uso do Índice de Vegetação por Diferença Normalizada (NDVI) combinado à temperatura do dossel e a outras características fisiológicas, tais como teor de clorofila e trocas gasosas, para monitorar plantas de soja (Glycine max L. Merrill) com respostas diferenciais à seca, sob condições de casa de vegetação. Adicionalmente, as respostas à seca das cultivares Embrapa 48 e BR 16 foram avaliadas sob condições de seca natural, déficit hídrico simulado abrigando-se as plantas da chuva nos períodos vegetativo e reprodutivo e irrigação sob condições de campo. Tecnologias de sensoriamento remoto puderam ser usadas para inicialmente avaliar as respostas à seca de plantas de soja sob condições controladas. Além disso, nós observamos a relação entre o NDVI e diversas características fisiológicas, tais como teor de clorofila, fotossíntese, condutância estomática e transpiração. Portanto, a combinação entre técnicas de sensoriamento remoto e a avaliação de características fisiológicas de materiais vegetais no mesmo estádio de desenvolvimento e áreas foliares é útil para monitorar precisamente cultivares apresentando diferentes respostas à seca.

Palavras-chave: Glycine max L. Merrill, NDVI, déficit hídrico

 

Embrapa Soybean, P.O. Box 231 – 86001-970 – Londrina, PR. *E-mail: joserenato.farias@embrapa.br. Autor para correspondência.
2 Londrina State University – Dept. of Geosciences, P.O. Box 10.011 – 86.057-970 – Londrina, PR – Brazil.
3 Technological Federal University of Paraná – 86036-370 – Londrina, PR – Brazil. Recebido em: 09/09/2015. Aprovado em: 09/09/2015.

 

Literatura Citada

ANJUM, S.A.; XIE, X.Y.; WANG, L.C.; SALEEM, M.F.; MAN, C.; LEI, W. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, v.6, p.2026-2032, 2011.

AYALA-ASTORGA, G.I.; ALCARAZ-MELENDEZ, L. Salinity effects on protein content, lipid peroxidation, pigments and proline in Paulownia imperialis and Paulowina fortune grown in vitro. Electronic Journal of Biotechnology, v.13, p.13-14, 2010.

BHATNAGAR-MATHUR, P.; DEVI, M.J.; REDDY, D.S.; LAVANYA, M.; VADEZ, V.; SERRAJ, R.; YAMAGUCHI-SHINOZAKI, K.; SHARMA, K.K. Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, v.26, p.2071-2082, 2007.

FEHR, W.R.; CAVINESS, C.E. Stages of soybean development. Ames: Iowa State University of Science and Technology, 1977.

FLEXAS, J.; BOTA, J.; LORETO, F.; CORNIC, G.; SHARKEY, T.D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, v.6, p.269-279, 2004.

HSIAO, T.C. Plant responses to water stress. Annual Review of Plant Physiology, v.24, p.519-570, 1973.

HUFSTETLER, E.V.; BOERMA, H.R.; CARTER, T.E.; EARL, H.G. Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Science, v.47, p.25-35, 2007.

JACKSON, R.D. Canopy temperature and crop water stress. In: HILLEL, D. Advances in Irrigation. New York: Academic Press, 1982, p.43-85.

JONES, C.L.; WECKLER, P.R.; MANESS, N.O.; JAYASEKARA, R.; STONE, M.L.; CHRZ, D. Remote sensing to estimate chlorophyll concentration in spinach using multi‐spectral plant reflectance. Transactions of the ASABE, v.50, p.2267-2273, 2007.

KATO, I. Histological and embryological studies on fallen flowers, pods and abortive seeds in soybean, Glycine max (L.). Tokai-Kinki National Agricultural Experiment Station Bull, v.11, p.1-52, 1964.

KHOLOVÁ, J.; HASH, C.T.; KAKKERA, A.; KOCOVÁ, M.; VADEZ, V. Constitutive water conserving mechanisms are correlated with the terminal drought tolerance of pearl millet (Pennisetum americanum (L.) R Br.). Journal of Experimental Botany, v.61, p.369-377, 2010a.

KHOLOVÁ, J.; HASH, C.T.; KUMAR, P.L.; YADAV, R.S.; KOCOVÁ, M.; VADEZ, V. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. Journal of Experimental Botany, v.61, p.1431-1440, 2010b.

LAWLOR, D.W. Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. Journal of Experimental Botany, v.63, p.695-709, 2013.

LIU, J.; PATTEY, E.; JÉGO, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, v.123, p.347-358, 2012.

MAFAKHERI, A.; SIOSEMARDEH, A.; BAHRAMNEJAD, B.; STRUIK, P.C.; SOHRABI, Y. Effect of drought stress on yield, proline and chlorophyll content in three Chickpea cultivars. Australian Journal of Crop Science, v.4, p.580-585, 2010.

MARTI, J.; BORT, J.; SLAFER, G.A.; ARAUS, J.L. Can wheat yield be assessed by early measurements of normalized difference vegetation index? Annals of Applied Biology, v.150, p.253-257, 2007.

MULLAN, D.J.; REYNOLDS, M.P. Quantifying genetic effects of ground cover on soil water evaporation using digital imaging. Functional Plant Biology, v.37, p.703-712, 2010.

OYA, T.; NEPOMUCENO, A.L.; NEUMAIER, N.; FARIAS, J.R.B.; TOBITA, S.; ITO, O. Drought tolerance characteristics of Brazilian soybean cultivars—evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Production Science, v.7, p.129-137, 2004.

PASSIOURA, J.B.; ANGUS, J.F. Improving productivity of crops in water-limited environments. In: SPARKS, D.L. Advances in Agronomy. Newark: University of Delaware, 2010, p.37-75.

PASSIOURA, J.B. Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Functional Plant Biology, v.39, p.851-859, 2012.

PEDERSEN, P.; KUMUDINI, S.; BOARD, J.; CONLEY, S. Soybean growth and development. In: DORRANCE, A.E.; DRAPER, M.A.; HERSHMAN, D.E. Using Foliar Fungicides to Manage Soybean Rust. Columbus: Ohio State University, 2005, p.41-47.

RAO, T.V.R. Monitoring water stress in soybeans with remote sensing techniques. Lincoln: University of Nebraska, 1985.

RAPER, C.D.; KRAMER, P.J. Stress physiology. In: WILCOX, J.R. Soybeans: Improvement, Production, and Uses. Madison: ASA, CSSA, and SSSA, 1987, p.589-641.

RAY, J.D.; SINCLAIR, T.R. Stomatal closure of maize hybrids in response to soil drying. Crop Science, v.37, p.803-807, 1997.

ROYO, C.; APARICIO, N.; VILLEGAS, D.; CASADESUS, J.; MONNEVEUX, P.; ARAUS, J.L. Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions. International Journal of Remote Sensing, v.24, p.4403-4419, 2003.

SADOK, W.; SINCLAIR, T.R. Genetic variability of transpiration response to vapour pressure deficit among soybean cultivars. Crop Science, v.49, p.955-960, 2009.

SETTER, T.L. Analysis of constituents for phenotyping drought tolerance in crop improvement. Frontiers in Physiology, v.3, p.1-12, 2012.

SIDDIQI, E.H.; ASHRAF, M.; HUSSAIN, M.; JAMIL, A. Assessment of intercultivar variation for salt tolerance in safflower (Carthamus tinctorius L.) using gas exchange characteristics as selection criteria. Pakistan Journal of Botany, v.41, p.2251-2259, 2009.

STOKSTAD, E. States sue over global warming. 2004. Available at: http://news.sciencemag.org/2004/07/states-sue-over-global-warming. Accessed on: March 09, 2015.

THORNTHWAITE, C.W.; MATHER, Jr. The water balance. Centerton: Laboratory of Climatology, 1955.

VADEZ, V.; SINCLAIR, T.R. Leaf ureide degradation and N2 fixation tolerance to water deficit in soybean. Journal of Experimental Botany, v.52, p.153-159, 2001.

WESTGATE, M.E.; PETERSON, C.M. Flower and pod development in water deficient soybean. Journal of Experimental Botany, v.44, p.109-117, 1993.

WANG, Q.; GUAN, Y.; WU, Y.; CHEN, H.; CHEN, F.; CHU, C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, v.67, p.589-602, 2008.

WOO, N.S.; BADGER, M.R.; POGSON, B.J. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods, v.4, p.1-14, 2008.

WRIGHT Jr., D.L.; RASMUSSEN Jr., V.P.; RAMSEY, R.D. Comparing the use of remote sensing with traditional techniques to detect nitrogen stress in wheat. Geocarto International, v.20, p.63-68, 2005.

YUHAS, A.N.; SCUDERI, L.A. MODIS-derived NDVI characterization of drought-induced evergreen dieoff in Western North America. Geographical Research, v.47, p.34-45, 2009.