Купить СНПЧ А7 Архангельск, оперативня доставка


Biometrical Analysis of a Mutant that Increases Shelf-Life of Tomato Fruits

DOI: http://dx.doi.org/10.13082/1984-7033.v01n01a05



Adilson R. Schuelter1, Vicente W. D. Casali2, Cosme D. Cruz3, Fernando L. Finger2, Antônio T. Amaral Júnior4 & Aldo Shimoya3


Abstract: The nature and the magnitude of the genetic effects of a mutation, denominated ´firme‘, involved in the shelf-life trait expression, were studied through the generation-means and the Griffing’s approach. Plants of tomato (Lycopersicon esculentum Mill.) cv. ‘Santa Clara’, ‘firme’ mutant and the accesses BGH-6913, BGH-6914 and BGH6915 were crossed in a diallel cross, excluding reciprocals, and the F2 and backcrossed populations were obtained for the first two parents. The results of the generation-means showed that the mutation increases shelf-life, the mean and the additive genetic effects being the main responsible for the character expression. The dominance deviation and epistasis, in turn, was of secondary importance. Similar results were obtained by the Griffing’s approach, where the mean squares of GCA effects were higher than those from SCA. The ‘firme’ mutant and BGH-6913 genotypes showed the largest magnitudes for GCA, being, therefore, of interest for intrapopulation breeding programs for genotypes with greater potential for postharvest storability. The best combinations for obtaining gains in segregating progenies from biparental crosses, are ‘firme’ mutant x BGH-6913, BGH-6914 x BGH-6915 and ‘Santa Clara’ x BGH-6915.

Key words: tomato, Lycopersicon esculentum, ‘Firme’ mutant, inheritance, genetic effects


1 Núcleo de Biologia Aplicada, Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS/EMBRAPA), Caixa Postal 151, CEP35701-970, Sete Lagoas-MG, Brazil. E-mail: adilson@cnpms.embrapa.br
2 Departamento de Fitotecnia, Universidade Federal de Viçosa, A.v. P.H. Rolfs, s/n, CEP 36571-000, Viçosa-MG, Brazil
3 Departamento de Biologia Geral, Universidade Federal de Viçosa, A.v. P.H. Rolfs, s/n,CEP 36571-000 Viçosa-MG, Brazil
4 Centro de Ciências e Tecnologias Agropecuárias,Universidade Estadual do Norte Fluminense, Av.Alberto Lamego, 2000, CEP 28015-620, Campos dos Goytacazes-RJ, Brazil


Literatura Citada

Cruz, C.D. 1997. Programa GENES – Aplicativo Computacional em Genética e Estatística. Editora UFV, Viçosa.

Cruz, C.D. and Regazzi, A.J. 1994. Modelos biométricos aplicados ao melhoramento genético. Imprensa Universitária, Viçosa.

Ferreira, R.P. 1995. Análises biométricas da tolerância do arroz (Oryza sativa L.) à toxidez de alumínio. Ph.D.Diss. Universidade Federal de Viçosa, Viçosa.

Gray, J.E.; Picton, S.; Giovannoni, J.J. and Grierson, D. 1994. The use of transgenic and naturally occurring mutants to understand and manipulate tomato fruit ripening. Plant Cell and Environment. 17:557-571. doi

Griffing, B. 1956. Concept of general and specific combining ability in relation to diallell crossing. Australian Journal of Biological Sciences. 9:463-493.

Hallauer, A.R. and Miranda, J.B. 1988. Quantitative genetics in maize breeding. Iowa State University Press, Ames.

Hobson, G. and Grierson, D. 1993. Tomato. p.405-739. In: Seymour, B.; Taylor, E. and Tucker, A. (Eds.). Biochemistry of fruit ripening. Chapman and Hall, London. doi

Kader, A.A.; Stevens, M.A.; Albright-Holton, M.; Morris, L.L. and Algazi, M. 1977. Effect of fruit ripeness when picked on flavor and composition in fresh market tomatoes. Journal of the American Society of Horticultural Science. 102:724-731.

Kearsey, M.J. and Pooni, H.S. 1996. The genetical analysis of quantitative traits. Chapman & Hall, London.

Leliévre, J. M. ; Latché, A. ; Jones, B.; Bouzayen, M. and Pech, J.C. 1997. Ethilene and fruit ripening. Physiologia Plantarum. 101:727-739. doi

Mather, K. and Jinks, J.L. 1984. Introdução à genética biométrica. Tradução de Francisco A. Moura Duarte. Gráfica e Editora FCA, Ribeirão Preto.

Mutschler, M.A.; Wolfe, D.W.; Cobb, E.D. and Yourstone, K.S. 1992. Tomato fruit quality and shelf life in hybrids heterozygous for the alc ripening mutant. HortScience. 27:352-355.

Oeller, P.W.; Min-Wong, L.; Taylor, L.P.; Pike, D.A. and Theologis, A. 1991. Reversible inhibition of tomato fruit senescence by antisense RNA. Science. 254:437-439. doi

Schuelter, A.R. 1999. Análise genética e da póscolheita de um mutante de tomate (Lycopersicon esculentum Mill.). Ph.D.Thesis. Universidade Federal de Viçosa, Viçosa.

Schuelter, A.R.; Finger, F.L. and Casali, V.W.D. 1997. Alterações na firmeza de frutos de um mutante de tomate oriundo da variedade Santa Clara, na região de Viçosa (MG). p.153. In: Anais do Congresso Nacional de Genética, 43., Goiânia, 1997. Sociedade Brasileira de Genética, São Paulo.

Singh, R.K. and Chaudhary, B.D. 1985. Biometrical methods in quantitative genetic analysis. Kalyani, New Delhi.

Stevens, M.A. and Rick, C.M. 1986. Genetics and breeding. p.35-110. In: Atherton, J.G. and Grierson, D. Tomato crop. Chapman and Hall, London. doi

Theologis, A.; Oeller, P.; Wong, L.; Rothmann, W. and Gantz, D. 1993. Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex developmental process. Development Genetics. 14:282-259. doi

Yang, S.F. 1985. Biosynthesis and action of ethylene. HortScience. 20:41-45.