Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Reconstrução dos Dados Faltantes em Imagens Orbitais de Temperatura da Superfície do Mar para a Região Sudoeste do Atlântico Sul

DOI: http://dx.doi.org/10.19180/1809-2667.v18n116-10

http://essentiaeditora.iff.edu.br/index.php/vertices 

downloadpdf

Elaine A. de Oliveira1, Leandro Calado2 & Alexandre M. Fernandes3

 

Resumo: Um método baseado em Função Ortogonal Empírica foi utilizado para reconstrução de imagens de Temperatura da Superfície do Mar (TSM). Foram adotadas abordagens univariada, utilizando somente dados TSM, e multivariada, combinando TSM e Mapas de Anomalia da Altura da Superfície Mar (MSLA). Com a abordagem multivariada foram testados e avaliados os benefícios da inédita adição dos MSLA na recuperação de feições oceanográficas ao largo da região sudoeste do Atlântico Sul. Ambas as abordagens apresentaram resultados qualitativos satisfatórios. Análises estatísticas verificaram melhora de ~5% da reconstrução multivariada em relação à univariada, ambas representaram corretamente as feições de mesoescala da Corrente do Brasil.

Palavras-chave: Reconstrução de Imagens. Imagens de Satélite. Corrente do Brasil. Função Ortogonal Empírica.

 

Abstract: An empirical orthogonal function-based technique was used to reconstruct missing data of Sea Surface Temperature (SST) images. Sea surface temperature data was used to assess the benefits of a univariate reconstruction, and the combination of both SST and Maps of Sea Level Anomalies (MSLA) data was used in a multivariate approach. In the multivariate approach the effect of addition of MSLA data in the reconstruction of Brazil Current (BC) features was assessed. Results were satisfactory in both approaches. The combination of SST plus MSLA significantly improves results obtained by reconstruction; statistical analyses found an improvement of ~ 5%. All experiments correctly represent the mesoscale features off the southwest South Atlantic.

Key words: Reconstruction of Image. Satellite Images. Brazil Current. Empirical Orthogonal Function.

 

1 Possui graduação em Oceanografia pela Universidade Federal do Paraná (2012). Atualmente é estudante de mestrado da Universidade do Estado do Rio de Janeiro e bolsista no Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM). E-mail: elaineoceanografia@gmail.com.
2 Doutor em Oceanografia Física pela Universidade de São Paulo – USP. Pesquisador Encarregado do Grupo de Sensoriamento Remoto – IEAPM. E-mail: leandro_calado@hotmail.com.
3 PhD. Na área de Oceanografia Física pela Florida State University-EUA. Prof. Adjunto – Departamento de Oceanografia Física – Faculdade de Oceanografia – UERJ. E-mail: alxmfr@gmail.com.

 

Literatura Citada

ALVERA-AZCÁRATE, A. et al. Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. Journal of Geophysical Research: Oceans, v. 112, n. C3, mar. 2007.

ALVERA-AZCÁRATE, A. et al. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Modelling, v. 9, n. C4, p. 325-346, 2005.

CENTRE NATIONAL D’ÉTUDES SPATIALES. SSALTO/DUACS user handbook: (M)SLA and (M)ADT near-real time and delayed time products. Stellite Altimetry Data, n. C4, jun. 2015.

BECKERS, J. M.; RIXEN, M. EOF calculations and data filling from incomplete oceanographic data sets. Journal of Atmospheric and Oceanic Technology, v. 20 , n. C12, p. 1839-1856, 2003.

BECKERS, J. M.; RIXEN, M. EOF Calculations and data filling from incomplete oceanographic datasets. Journal of Atmospheric and Oceanic Technology, v. 20, n. C12, p. 1839-1856, 2003.

CALADO, L. Dinâmica da interação da atividade de mesoescala da Corrente do Brasil com o fenômeno da ressurgência costeira ao largo de Cabo Frio e Cabo de São Tome. 2006. Tese (Doutorado)–Universidade de São Paulo, São Paulo, 2006.

COLLINS, D. C.; REASON, C. J. C.; TANGANG, F. Predictability of Indian Ocean sea surface temperature using canonical correlation analysis. Climate Dynamics, v. 22, n. C5, p. 481-497, 2004.

CHAO, Y. et al. Blending sea surface temperatures from multiple satellites and in situ observations for coastal oceans. Journal of Atmospheric and Oceanic Technology, v. 26, n. C7, p. 1415-1426, 2009.

SILVA, J. da et al. Role of surface films in ERS SAR signatures of internal waves on the shelf: 1: short-period internal waves. Journal of Geophysical Research, v. 103, n. C4, p. 8009–8031, 1998.

DONG, X. et al. Absolute calibration of the TOPEX/Poseidon altimeters using UK tide gauges, GPS, and precise, local geoid-differences. Marine Geodesy, v., 25, n. C3, p. 189-204, 2002.

DONLON, C. et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bulletin of the American Meteorological Society, v. 88, n. C8, p. 1197-1213, 2007.

FIEGUTH, P. et al. Mapping Mediterranean altimeter data with a multiresolution optimal interpolation algorithm. Journal of Atmospheric and Oceanic Technology, v. 15, n. C2, p. 535-546, 1998.

GENTEMANN, C. L. et al. In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. Journal of Geophysical Research: Oceans v. 109, n. C4, p. 1978-2012, 2004.

GOMIS, D.; RUIZ, S.; PEDDER, M. A. Diagnostic analysis of the 3D ageostrophic circulation from a multivariate spatial interpolation of CTD and ADCP data. Deep Sea Research Part I: Oceanographic Research Papers, v. 48, n. C1, p. 269-295, 2001.

GHIL, M. et al. Advanced spectral methods for climatic time series. Reviews of geophysics, v. 40, n. 1, p. 3-11, 2002.

HØYER, J. L.; E SHE, J. Optimal interpolation of sea surface temperature for the North Sea and Baltic Sea . Journal of Marine Systems, v. 65, n. C1, p. 176-189, 2007.

KIM, K. Y.; WU, Q. Optimal detection using cyclostationary EOFs. Journal of Climate, v. 13, n. C5, 938-950, 2000.

JARQUE, C. M.; BERA, A. K. A test for normality of observations and regression residuals. International Statistical Review/Revue Internationale de Statistique, v. 55, n. C1, p. 163-172, 1987.

JOLLIFFE, I. T.; TRENDAFILOV, N. T.; UDDIN, M. A modified principal component technique based on the LASSO. Journal of Computational and Graphical Statistics, v. 12, n. C3, p. 531-547, 2003.

LIU, A. et al. Evolution of nonlinear internal waves in the East and South China seas. Journal of Geophysical Research, v. 103, n. C4, p. 7995-8008, 1998.

MARTIN, M. et al. Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons: part 1: a GHRSST multi-product ensemble (GMPE). Deep Sea Research Part II: Topical Studies in Oceanography, v. 77, p. 21-30, 2012.

MAURI, E.; POULAIN, P. M.; JUZNICZONTAC, Z. MODIS chlorophyll variability in the northern Adriatic Sea and relationship with forcing parameters. Journal of Geophysical Research, v. 112, n. C3. 2007.

MAURI, E., POULAIN, P. M.; NOTARSTEFANO, G.. Spatial and temporal variability of the sea surface temperature in the Gulf of Trieste between January 2000 and December 2006. Journal of Geophysical Research, 2008.

MELLO FILHO, W. L. Observação de Processos Oceanográficos de Superfície na Costa Sudeste Brasileira através de imagens termais do sensor AVHRR/NOAA. 2006. Dissertação (Mestrado)–Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, 2006. 85 p.

KAPLAN, A. Analyses of global sea surface temperature. Journal of Geophysical Research: Oceans (1978–2012), v. 103, n. C9, p. 18567-18589, 1998.

KAPLAN, A. Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures. Journal of Geophysical Research: Oceans (1978–2012), v. 102, n. C13, p. 27835-27860, 1997.

MASSEY JR, F. J. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, v. 46, n. 253, p. 68-78, 1951.

PAES, R. C. de O. V. Metodologia de reconhecimento de vórtices a partir de imagens orbitais. 2009. 87 f. Tese (Doutorado em Engenharia Civil)–Universidade Federal do Rio de Janeiro, 2009.

PARIS, C. B. et al. Multivariate objective analysis of the coastal circulation of Barbados, West Indies: implication for larval transport. Deep Sea Research Part I: Oceanographic Research Papers, v. 49, n. 8, p. 1363-1386, 2002.

PIOLA, A. R. et al. The influence of the Plata River discharge on the western South Atlantic shelf. Geophysical Research Letters, v. 32, n. 1, 2005.

PIOLA, A. R. et al. Subtropical shelf front off eastern South America. Journal of Geophysical Research: Oceans (1978-2012), v. 105, n. C3, p. 6565-6578, 2000.

POLITO, P. S.; SATO, O. T.; LIU, W. T. Characterization and validation of the heat storage variability from TOPEX/Poseidon at four oceanographic sites. Journal of Geophysical Research: Oceans (1978–2012), v. 105, n. C7, p. 16911-16921, 2000.

REYNOLDS, R. et al. An improved in situ and satellite SST analysis for climate. Journal of climate, v. 15, n. 13, p. 1609-1625, 2002.

REYNOLDS, R. W., & SMITH, T. M. Improved global sea surface temperature analyses using optimum interpolation. Journal of climate, v. 7, n. 6, p. 929-948, 1994.

ROBINSON, I. S. Satellite Oceanography: an introduction for oceanographersand remote-sensing scientists. Chichester, Reino Unido: Ellis Horwood Ltd., 1985. 455 p.

ROBINSON, I. S. Oceanography from Space: course notes: Southampton, Reino Unido: University of Southampton, School of Ocean and Earth Science, 1996.

SILVEIRA, I. C. A. O sistema corrente do Brasil na Bacia de Campos, RJ. São Paulo: Universidade de São Paulo, 2007.

SMITH, T. M. et al. Reconstruction of historical sea surface temperatures using empirical orthogonal functions. Journal of Climate, v. 9, n. 6, p. 1403-1420, 1996.

SOUZA, R. B. D. Sensoriamento remoto dos oceanos. Revista Espaço e Geografia, 2010.

SOUZA, R. B. D. Oceanografia por Satélites. São Paulo: Oficina de textos, 2005. p. 102-116.