Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Genetic Identification of Fishing Stocks: New Tools for Population Studies of the Spiny Lobster Panulirus argus (Latreille, 1804)

DOI: http://dx.doi.org/10.17080/1676-5664/btcc.v10n1p95-111

http://www.periodicos.ufra.edu.br/index.php?journal=tjfas 

downloadpdf

Fábio M. Diniz1, Masayoshi Ogawa2, Israel H. A. Cintra3, Norman Maclean4 & Paul Bentzen5

 

Abstract: Over the past years fishery managers and scientists have been addressing concerns on the spiny lobster Panulirus argus fisheries, due to unsustainable harvesting throughout the coastline of the Americas. Commercial fishing commonly overexploits stocks, and current landings of P. argus fisheries throughout the western central Atlantic indicate a resource that is being exploited beyond its limits. Knowledge regarding population subdivision is critical to sustainable fishery management and seems to be the correct approach as a problem-solving strategy in P. argus fisheries. The goal of this article is to provide baseline information in order to help researchers and fishery managers build knowledge base that would be used to facilitate the conservation and support the establishment of specific regional management policies for this valuable resource. With the advance of DNA technologies new approaches started to be applied on population genetic studies. Molecular ecologists have begun to use new techniques that allow them to subdivide a particular species into a number of genetically distinct stocks. The application of both microsatellite markers and DNA sequencing to the population genetics of P. argus is believed to be the method of choice in detecting heterogeneity and identifying lobster stocks. However, both genetic and ecological tools (e.g. fully understanding of hydrological patterns along the coast) should be integrated to efficiently manage P. argus fisheries in Brazil and in the Caribbean.

Key words: population genetics, lobster fisheries, molecular markers, DNA

 

Resumo: Nos últimos anos gerentes de pesca e pesquisadores têm endereçado grande preocupação à pesca da lagosta vermelha Panulirus argus, devido principalmente à sua pesca insustentável em todo o litoral Atlântico dos Americas. A pesca comercial geralmente causa sobrepesca aos estoques, e dados atuais indicam um recurso sendo explorado além de seus limites em todo o Atlântico Ocidental. O conhecimento da estrutura genética populacional da lagosta P. argus é crítico à gerência sustentável da pesca e parece ser a abordagem correta tendo em vista soluções aos atuais problemas. O objetivo deste artigo é fornecer informações à investigadores e gerentes de pesca visando a construção de uma forte base de conhecimento que poderá ser utilizada na elaboração e no estabelecimento de regulamentações específicas à pesca deste valioso recurso pesqueiro. Com o avanço de tecnologias do DNA novas abordagens começaram a ser aplicadas em estudos genéticos populacionais. Ecologista moleculares começaram a usar novas técnicas que permitem subdividir uma espécie particular em um número de estoques geneticamente distintos. A aplicação de marcadores microssatélites e/ou o sequenciamento do DNA à análise genética da P. argus é o método de escolha para detectar a heterogeneidade e a identificação de estoques de lagosta. Entretanto, ferramentas genéticas e ecológicas (e.g. padrões hidrológicos ao longo da costa) devem ser integrados para gerenciar eficientemente a pesca da lagosta P. argus na costa do Brasil e no mar do Caribe.

Palavras-chave: genética populacional, pesca da lagosta, marcadores moleculares, DNA

 

1 EMBRAPA Meio-Norte, CP: 01, CEP: 64006-220, Teresina, PI, Brazil. E-mail: fmdiniz1@yahoo.co.uk
2 Department of Fisheries Engineering, Federal University of Ceará, Fortaleza, CEP 60.356-000, Brazil
3 Federal Rural University of Amazônia, Belém, Brazil
4 School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, UK
5 Department of Biology, Dalhousie University, Halifax, NS, B3H 4J1, Canada

 

Literatura Citada

ACOSTA, C.A.; MATTHEWS, T.R.; BUTLER IV, M.J. Temporal patterns and transport pro¬cesses in recruitment of spiny lobster (Panulirus argus) postlarvae to south Florida. Mar. Biol., v. 129, p. 79-85, 1997. doi

AGARDY, T. Effects of fisheries on marine ecosystems: a conservationist’s perspective. ICES J. Mar. Sci., v.57, p. 761-765, 2000. doi

AVISE, J. C. Phylogeography: The History and Formation of Species. Cambridge, Ma: Harvard University Press, 2000. 464 p.

AVISE, J. C. Molecular Markers, Natural History and Evolution. 2a. edição. New York: Chapman And Hall, 2004. 511 p.

BARON, B.; POIRIER, C.; SIMON-CHAZOTTES, D.; BARNIER, C.; GUÉNET, J. L. A new strategy useful for rapid identification of microsatellites from DNA libraries with large size inserts. Nucleic Acids Res., v. 20, p. 3665-3669, 1992. doi

BECKLEY, L.E. and C.D. van der Lingen. 1999. Biology, fishery and management of sar¬dines (Sardinops sagax) in southern African waters. Mar. Freshwat. Res. 50: 955-978. doi

BILLINGTON, N. Mitochondrial DNA. In: HALLERMAN, E. M. (Ed.). Population genetics: principles and applications for Fisheries Scientists. Bethesda, Md: American Fisheries Society, 2003. p. 59-100.

BLISS, D. Shrimps, Lobsters and Crabs. New Jersey: New Century Publishers, 1982. 242 p.

BOHONAK, A.J. Dispersal, gene flow, and population structure. Q. Rev. Biol., v. 74, p. 21- 45, 1999. doi

BOOTH, J.D.; PHILLIPS, B.F.. Early life history of spiny lobster. Crustaceana, v. 66, p. 271- 294, 1994. doi

BOWMAN, T.E.; ABELE, L.G., 1982, Classification of the recent crustacea. In: L. G. ABELE (ed.), The biology of crustacea: systematics, the fossil record and biogeography. New York Acad. Press Inc., New York, v. 1, pp. 1-27.

CALEF, G.W.; GRICE, G.D. Influence of the Amazon River outflow on the ecology of the western tropical Atlantic.II. Zooplankton abundance, copepod distribution, with remarks on the fauna of low salinity areas. J. Mar. Res., v. 25, p. 84-94, 1967.

CARREIRO, C.R.P. Identificação de populações da lagosta vermelha, Panulirus argus, no Norte e Nordeste do Brasil, usando marcadores moleculares do tipo RAPD. 2001. 80 f. Dissertação (Mestrado) - Curso de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, 2001.

CARVALHO, G.R.; HAUSER, L. Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fisher., v.4, p. 326-350, 1994. doi

CASTRO, B.M.; MIRANDA, L.B. Physical oceanography of the western Atlantic continental shelf located between 4°N and 34°S. In: Robinson, A.R.; Brink, K.H. (eds.): The Sea. New York: John Wiley & Sons, 1998. p. 209-252.

CHEKUNOVA, V.I. Geographical distribution of spiny lobsters and ecological factors deter¬mining their commercial abundance. Trudy VNIRO, v. 77, p. 110-119, 1972.

CHU, K.H.; LI, C.P.; TAM, Y.K.; LAVERY, S. Application of mitochondrial control region in population genetic studies of the shrimp Penaeus. Mol. Ecol. Notes, v. 3, p. 120-122, 2003. doi

PHILLIPS, B. F.; COBB, J. S.; GEORGE, R. W. General biology. In: COBB, J. S.; PHILLIPS, B. F. (Ed.). The biology and management of lobsters. New York: Academic Press, 1980, p. 1-82. doi

COBB, J. S.; WANG, D. Fisheries biology of lobsters and crayfishes. In: PROVENZANO, A. J. The Biology of Crustacea (Vol. 10). San Diego: Academic Press, 1985. Cap. 3, p. 167-247. http://dx.doi.org/10.1016/b978-0-12-106410-5.50013-4

COCHRANE, K.L.; CHAKALALL, B. The spiny lobster fishery in the WECAFC region - An approach to responsible fisheries management. Mar. Freshwater Res., v. 52, p. 1623-1631, 2001. doi

DINIZ, F.M.; MACLEAN, N.; OGAWA, M.; CINTRA, I. H; BENTZEN, P. The hypervariable domain of the mitochondrial control region in Atlantic spiny lobsters and its potential as a marker for investigating phylogeographical structuring. Mar. Biotechnol., v. 7, p. 462-473, 2005a. doi

DINIZ, F.M.; MACLEAN, N.; OGAWA, M.; PATERSON, I.; BENTZEN, P. Microsatellites in the overexploited spiny lobster Panulirus argus: isolation, characterization of loci and poten¬tial for intraspecific variability studies. Cons. Gen., v.6, p. 637-641, 2005b. doi

DINIZ, F.M.; MACLEAN, N.; PATERSON, I.G.; BENTZEN, P. Polymorphic tetranucleotide microsatellite markers in the Caribbean spiny lobster, Panulirus argus. Mol. Ecol. Notes, v. 4, p. 327-329, 2004. doi

EMILSSON, I. Alguns aspectos físicos e químicos das águas marinhas brasileiras. Ciên. Cult., v. 11, p. 44-54, 1959.

EVANS, C.R.; EVANS, A.J. Fisheries ecology of spiny lobsters Panulirus argus and P. guttatus on the Bermuda platform: Estimates of sustainable yields and observations on trends in abundance. Fish. Res., v.24, p. 113-128, 1995. doi

EZER, T.; OEY, L.Y.; LEE, H.C.; STURGES, W. The variability of currents in the Yucatán Channel: Analysis of results from a numerical ocean model. J. Geophys. Res., v. 108(C1), p. 3012.1-3012.13, 2003.

FAO (Food & Agriculture Organization). Report on the FAO/DANIDA/CFRAMP/ WECAFC Regional Workshops on the Assessment of the Caribbean Spiny Lobster (Panulirus argus). FAO Fisheries Report, v. 619, 2000. 381 p.

FAO/WECAFC/COPACO. Report of the second Workshop on the Management of Car¬ibbean Spiny Lobster Fisheries in the WECAFC Area. Havana, Cuba, 30 September – 4 October 2002.; FAO Fisheries Department FishCode Programme/Programa FishCode del Departamento de Pesca. FAO Fisheries Report - R715, 2003. 289 p.

FLOETER, S.R.; GASPARINI, J.L. The southwestern Atlantic reef-fish fauna: composition and zoogeographic patterns. J. Fish Biol., v. 56, p. 1099-1114, 2000. doi

FONTELES-FILHO, A. A. State of the lobster fishery in North-east Brazil. In: PHILLIPS, B. F.; COBB, J. S.; KITTAKA, J. (Eds.). Spiny lobster management. Oxford: Fishing News Books, 1994. p. 108-118.

FRATANTONI, D.M.; JOHNS, W.E.; TOWNSEND, T.L.; HURLBURT, H.E. Low-Latitude Cir¬culation and Mass Transport Pathways In A Model Of The Tropical Atlantic Ocean. J. Phys. Oceanogr., v. 30, p. 1944-1966, 2000. doi

GLAHOLT, R.D.; SEEB, J. Preliminary investigation into the origin of the spiny lobster, Panulirus argus (Latreille 1804), population of Belize, Central-america (Decapoda, Palinu¬ridea). Crustaceana, v. 62, p. 159-165, 1992. doi

GRABOWSKI, M.; STUCK, K.C. Structure and intraspecific variability of the control re¬gion mtDNA in the pink shrimp, Farfantepenaeus duorarum (Decapoda, Penaeidae). In: SCHRAM, F.R.; von VAUPEL KLEIN, J.C. (eds.). Crustaceans and the Biodiversity Crisis, Vol. I, Leiden: Brill Acad. Publ., 1999. p. 333–344.

GRABOWSKI, M.; GRATER, W.D.; STUCK K.C. A novel polymorphic mtDNA marker for population studies of the pink shrimp, Farfantepenaeus duorarum (Crustacea, Penaeidae). Oceanologia, v. 46, p. 147-151, 2004.

GROSBERG, R.K.; CUNNINGHAM, C.W. Genetic structure in the sea: from populations to communities. In: Bertness, M.D., Gaines, S., Hay, M.E. (eds.). Marine Community Ecology. Sunderland, MD: Sinauer Associates, 2001. p. 61-84.

HATELY, J.G.; SLEETER, T.D. A biochemical genetic investigation of spiny lobster (Panulirus argus) stock replenishment in Bermuda. Bull. Mar. Sci., v. 53, p. 993-1008, 1993.

HOLTHUIS, L.B. FAO species catalogue. Vol. 13. Marine Lobsters of the World. An An¬notated and Illustrated Catalogue of Species of Interest to Fisheries Known to Date. FAO Fisheries Synopsis 125, v. 13, pp 1-292, 1991.

HULBURT, E.M.; CORWIN, N.A. Influence of the Amazon River outflow on the ecology of the western tropical Atlantic. J. Mar. Res., v. 27, p. 55-72, 1969.

IBAMA. Lagosta, caranguejo uçá e camarão Nordeste. Série Estudos Pesca. Brasília: IBAMA. 1994. 67 p.

JARNE, P.; LAGODA, J.L. Microsatellites, from molecules to populations and back. TREE, v. 11, p. 424-429, 1996. doi

KINDER, T.H. Shallow currents in the Caribbean Sea and Gulf of Mexico as observed with satellite-tracked drifters. Bull. Mar. Sci., v. 33, p. 239-246, 1983.

KNOPPERS, B.; EKAU, W.; FIGUEIREDO, A.G. The coast and shelf of east and northeast Brazil and material transport. Geo-Marine Lett., v.19, p. 171-178, 1999. doi

KOMM, B.; MICHAELS, A.; TSOKOS, J.; LINTON, J. Isolation and characterization of the mitochondrial DNA from the Florida spiny lobster, Panulirus argus. Comp. Biochem. Physiol. B., v. 73B, n. 4, p. 923-929, 1982. doi

LIPCIUS, R.N.; COBB, J.S. Introduction: ecology and fishery biology of spiny lobsters. In: PHILLIPS, B.S.; COBB, J.S.; KITTAKA, J. (Eds.). Spiny lobster management. Oxford: Fishing News Books, 1994. p. 1-30.

LYONS, W.G. Possible sources of Florida’s spiny lobster population. Proc. Gulf Caribb. Fish. Inst., v.33, p. 253-266, 1981.

MCLEAN, M.; OKUBO, C.K.; TRACY, M.L. mtDNA heterogeneity in Panulirus argus. Expe¬rientia, v. 39, p. 536-538, 1983. 

MCMILLEN-JACKSON, A.L.; BERT, T.M. Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern United States. Mol. Ecol., v. 12, p. 2895-2905, 2003. doi

MCMILLEN-JACKSON, A.L.; BERT, T.M. Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum. J. Crustacean Biol., v. 24, p. 101-109, 2004. doi

MENZIES, R.A.; KERRIGAN, J.M. Implications of spiny lobster recruitment patterns of the Caribbean - a biochemical genetic approach. Proc. Gulf Caribb. Fish. Inst., v. 31, p. 164- 178, 1979.

MENZIES, R.A. Biochemical population genetics and the spiny lobster larval recruitment problem: an update. Proc. Gulf Caribb. Fish. Inst., v. 33, p. 230-243, 1981.

MITTON, J.B. Molecular Approaches To Population Biology. Annual Rev. Ecol. Syst., v. 25, p. 45-69, 1994. doi

OGAWA, M.; OLIVEIRA, G.M.; SEZAKI, K.; Genetic variations in three species of spiny lobster Panulirus argus, Panulirus laevicauda and Panulirus japonicus. Rev. Inves. Pesq., v. 12, p. 39-44, 1991.

PAIVA, M.P. Distribuição do esforço e variação da abundância na pesca de lagosta no Es¬tado do Ceará. Cien. Cult., v. 26, p. 365-369, 1974.

PALUMBI, S.R. Genetic divergence, reproductive isolation and marine speciation. Annual Rev. Ecol. Syst., v. 25, p. 547-572, 1994. doi

PETERSON, R.G.; STRAMMA, L. Upper-level circulation in the South Atlantic Ocean. Progress Oceanogr., v. 26, p. 1-73, 1991. doi

PHILLIPS, B.F.A.; COBB, J.S.; GEORGE, R.W. General Biology. In COBB, J. S.; PHILLIPS, B. F. The biology and management of lobsters: Vol. 1 Physiology and Behavior. New York: Academic Press, 1980a. 1-82 p. http://dx.doi.org/10.1016/b978-0-12-177401-1.50007-7

POLLOCK, D.E. Recruitment overfishing and resilience in spiny lobster populations. ICES J. Mar. Sci., v. 50, p. 9-14, 1993. doi

RICHARDS, W.J.; POTTHOFF, T. Distribution and seasonal occurrence of larval pelagic stages of spiny lobsters (Palinuridae, Panulirus) in the western tropical Atlantic. Proc. Gulf Caribb. Fish. Inst., v. 33, p. 244-252, 1981.

ROEMMICH, D.; MCGOWAN, J. Climatic warming and the decline of zooplankton in the California Current. Science, v. 267, p. 1324-1326, 1995. doi

RUZZANTE, D.E.; TAGGART, C.T.; COOK, D.; et al. Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: microsatellite DNA variation and antifreeze level. Can. J. Fish. Aquat. Sci., v. 53, p. 634-645., 1996. doi

SARVER, S.K.; SILBERMAN, J.D.; WALSH, P.J. Mitochondrial DNA sequence evidence supporting the recognition of two subspecies or species of the Florida spiny lobster Panulirus argus. J. Crust. Biol., v.18, p. 177-186, 1998. doi

SILBERMAN, J.D.; SARVER, S.K.; WALSH, P.J. Mitochondrial DNA variation in seasonal cohorts of spiny lobster (Panulirus argus) postlarvae. Mol. Mar. Biol. Biotechnol., v.3, p. 165-170, 1994a.

SILBERMAN, J.D.; SARVER, S.K.; WALSH, P.J. Mitochondrial DNA variation and popula¬tion structure in the spiny lobster Panulirus argus. Mar. Biol., v.120, p. 601-608, 1994b. doi

STRAMMA, L.; ENGLAND, M. On the water masses and mean circulation of the South At¬lantic Ocean. J. Geophys. Res., v. 104, p. 20863-20883, 1999. doi

STRAMMA, L.; PETERSON, R.G. The South Atlantic Current. J. Phys. Oceanogr., v. 20, p. 846-859, 1990. doi

STREIFF, R.; GUILLEMAUD, T.; ALBERTO, F. Isolation and characterization of microsatel¬lite loci in the Norway lobster (Nephrops norvegicus). Mol. Ecol. Notes, v. 1, p. 71-72, 2001. doi

SUNNUCKS, P. Efficient genetic markers for population biology. TREE, v. 15, p. 199-203, 2000. doi

TAM, Y.K.; Kornfield, I. Characterization of microsatellite markers in Homarus (Crustacea, Decapoda). Mol. Mar. Biol. Bictechnol., v. 5, p. 230-238, 1996.

TAUTZ, D.; Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res., v. 12, p. 4127-4138, 1984. doi

THORPE, J.P.; SOLE-CAVA, A.M.; WATTS, P.C. Exploited marine invertebrates: genetics and fisheries. Hydrobiologia, v. 420, p.165-184, 2000. doi

WARD, R.D. Genetics of fish populations. In Hart P.J.B, Reynolds, J.D. (eds), Handbook of Fish Biology and Fisheries. Blackwell Publishing, London: 200-224. 2002. doi

WILLIAMS, A.B.; ABELE, L.G.; FELDER, D.L. Common and Scientific Names of Aquatic Invertebrates from the United States and Canada: Decapod Crustaceans. Am. Fish. Soc. Spec. Publ., v. 17, p. 1-77, 1989.

YAMAUCHI, M.M.; MIYA, M.U.; NISHIDA, M. Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda). Gene, v. 295, p. 89- 96, 2002. doi

YEUNG, C.; MCGOWAN, M.F. Differences in inshore-offshore and vertical distribution of phyllosoma larvae of Panulirus, Scyllarus, and Syllarides in the Florida Keys in May-June, 1989. Bull. Mar. Sci., v. 49, p. 699-714. 1991.