Купить СНПЧ А7 Архангельск, оперативня доставка


Aspectos Biomecânicos e Fisiológicos da Fadiga na Locomoção Humana: Conceitos, Mecanismos e Aplicações

DOI: http://dx.doi.org/10.15602/1983-9480/cmrs.v12n23p89-98



Artur B. Santos1, Renata L. Bona2, Flávio A. S. Castro3 & Leonardo A. P. Tartaruga3


Resumo: A locomoção humana é um resultado complexo do processo de evolução. O conhecimento da influência do processo da fadiga constitui-se de uma importante ferramenta para melhora do treinamento, reabilitação e desempenho na marcha e na corrida. Diferentes conceitos são utilizados para o termo fadiga e no estudo dos seus processos diversas metodologias são geralmente utilizadas, pois possibilitam condições controladas para aquisição de dados biomecânicos, neuromusculares e fisiológicos viabilizando a análise dos fatores envolvidos no desenvolvimento da fadiga. Não existe um consenso sobre os mecanismos do processo de fadiga, seja ela de origem periférica ou central. Dessa maneira, esses fatores são importantes para profissionais do treinamento, da reabilitação física e da área da saúde em geral.

Palavras-chave: Fadiga - Locomoção Humana – Biomecânica – Fisiologia – Reabilitação


Abstract: The human locomotion is a complex result of evolution process. The comprehension of fatigue is an important tool for improves training, rehabilitation of human gait knowledge. Different concepts are used to define fatigue and to study processes involved several methodologies is often used for evaluation because allow controlled conditions for biomechanics, neuromuscular and physiologic data acquisition, making possible the analysis of the factors involved in the fatigue development. The source of the fatigue process in both cases, central or peripheral are discussed in the literature. Thus, these factors are important for professional of training, physical rehabilitation and health care.

Key words: Fatigue – Human locomotion – Biomechanics – Physiology - Rehabilitation


1 Mestrando em Ciências do Movimento Humano - PPGCMH/ UFRGS
2 Mestranda em Ciências do Movimento Humano - PPGCMH/ UFRGS
3 Docente do PPGCMH/ UFRGS


Literatura Citada

ALEXANDER, R.; GOLDSPINK, G. Mechanics and Energetics of Animal Locomotion. In Terrestrial Locomotion (ed. M. Alexander) p. 168-203. New York: John Wiley & Sons, 1977.

ANDRIACCHI, T.; ALEXANDER, E. Studies of human locomotion: past, present and future. J Biomech. v. 33, n. 10, p. 1217-1224, 2000. doi

AMENT, W.; VERKERKE, G. Exercise and fatigue. Sports Med. v. 39, n. 5, p. 389-422, 2009. doi

AMANN, M.; DEMPSEY, J. Locomotor muscle fatigue modifi es central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. v. 586, n. 1, p. 161–173, 2008. doi

AMANN, M.; PROCTOR, L.; SEBRANEK, J.; PEGELOW, D.; DEMPSEY, J. Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol. v. 587, n. 1, p. 271–283, 2009. doi

ANDERSON, F.; PANDY, M. Dynamic optimization of human walking. J. Biomech. Eng. v. 123, p. 381-390, 2001. doi

AVOGADRO, P.; DOLENEC, A.; BELLI, A. Changes in mechanical work during severe exhausting running. Eur J Appl Physiol. v. 90, n. 1-2, p. 165-170, 2003. doi

BARON, B.; NOAKES, T.; DEKERLE, J.; MOULLAN, F.; ROBIN, S.; MATRAN, R.; PELAYO, P. Why does exercise terminate at the maximal lactate steady state intensity? Br J Sports Med. v. 42, n. 10, p. 828-833, 2008. doi

BARRY, B.; ENOKA, R. The neurobiology of muscle fatigue: 15 years later. Integr. Comp. Biol. v. 47, n. 4, p. 465-473, 2007. doi

BILLAUT, F.; BISHOPS, D. Muscle fatigue in males and females during multiple-sprint. Exerc Sports Med. 39, n. 4, p. 257-278, 2009. doi

BONA, R.; ALDABE, D.; RIBEIRO, J. Avaliação do gasto energético em pacientes amputados de membro inferior protetizados. Arquivos Sanny de Pesquisa em Saúde. v. 1, p. 98-108, 2008.

BORRANI, F.; CANDAU, R.; PERREY, MILLET, S.; MILLET, G.; ROUILLON, J. Does the mechanical work in running change during the VO2 slow component? Med Sci Sports Exerc. v. 35, n. 1, p. 50-57, 2003. BRAMBLE, D.; LIEBERMAN, D. Endurance running and the evolution of Homo. Nature. v. 432, p. 345-352, 2004.

CANDAU, R.; BELLI, A.; MILLET, G.; GEORGES, D.; BARBIER, B.; ROUILLON, J. Energy cost and running mechanics during a treadmill run to voluntary exhaustion in humans. Eur J Appl Physiol Occup Physiol. v. 77, n. 6, p. 479-485, 1998. doi

CAVAGNA, G.; KANEKO, M. Mechanical work and effi - ciency in level walking and running. J. Physiol. v. 268, n. 2, p. 467-481, 1977. doi

CHRISTINA, K.; WHITE, S.; GILCHIST, L. Effect of localized muscle fatigue on vertical ground reaction forces and ankle joint motion during running. Hum Mov Sci. v. 20, n. 3, p. 257-276, 2001. doi

DALLEAU, G.; BELLI, A.; BOURDIN, M.; LACOUR, J. The spring-mass model and the energy cost of treadmill running. Eur J Appl Physiol Occup Physiol. v. 77, n. 3, p. 257-263, 1998. doi

DETREMBLEUR, C.; VANMARSENILLE, J.; CUYPER, F.; DIERICK, F. Relationship Between Energy Cost, Gait Speed, Vertical Displacement of Centre of Body Mass and Effi ciency of Pendulum-like Mechanism in Unilateral Amputee. Gait Posture. v. 21, p. 333-340, 2005. doi

DEVRIES, H. Method for evaluation of muscle fatigue and endurance from electromyographic fatigue curves. Am J Phys Med. v. 47, n. 3, p. 125-135, 1968.

DI GIULIO, C.; DANIELE, F.; TIPTON, C. Angelo Mosso and muscular fatigue: 116 years after the fi rst congress of physiologists. Adv Physiol Educ. v. 30, p. 51– 57, 2006. doi

DUTTO, D.; SMITH, G. Changes in spring-mass characteristics during treadmill running to exhaustion. Med Sci Sports Exerc. v. 34, n. 8, p. 1324-1331, 2002. doi

ENOKA, R.; DUCHATEAU, J. Muscle fatigue: what, why and how it infl uences muscle function. J Physiol. v. 586, n. 1, p. 11–23, 2008. doi

FENN, W. Frictional and kinetic factors in the work of sprint running. Am J Physiol. v. 92, n. 3, p. 583–611, 1930a.

FENN, W. Work against gravity and work due to velocity changes in running. Am J Physiol. v. 93, p. 433-462, 1930b.

GANDEVIA, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. v. 81, p. 1725-1789, 2001.

HAWLEY, J.; REILLY, A. Fatigue revisited. J Sports Sci. v. 15, n. 3, p. 245-246, 1997.

HECKE, A.; MALGHEM, C.; RENDERS, A.; DETREMBLEUR, C.; PALUMBO, S.; LEJEUNE, T. Mechanical work, energetic cost, and gait effi ciency in children with cerebral palsy. J Pediatr Orthop. v. 27, p. 643 – 647, 2007. doi

HEGLUND, N.C. Running a-fowl of the law. Science. v. 303, p. 47-48, 2004. doi

HILL, A.; LUPTON, H. Muscular exercise, latic acid, and the supply and utilization of oxygen. Quart. J. of Med. p. 135-171, 1923. doi

HUNTER, I.; SMITH, G. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. Eur J Appl Physiol. v. 100, n. 6, p. 653-661, 2007. doi

KANDEL, E.; SCHWARTZ, M. Principles of Neural Science. In Descending Control of Spinal Circuit (ed. E.R. Kandel and J.H. Schwartz) pp. 316-321. New York: Elsevier North Holland, 1981.

KELLIS, E.; LIASSOU, C. The effect of selective muscle fatigue on sagittal lower limb kinematics and muscle activity during level running. J Orthop Sports Phys Ther. v. 39, n. 3, p. 210-220, 2009. doi

KUO, A. The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control. v. 6, n. 2, pp. 129–145, 2002.

KUO, A. D. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Hum Mov Sci. v. 26, n. 4, p. 617-656, 2007. doi

MATTES, S.; PHILIP, E.; TODD, R. Walking symmetry and energy cost in persons with unilateral transtibial amputations: matching prosthetic and intact limb inertial properties. Arch Phys Med., v. 81, p. 561-568, 2000. doi

MINETTI, A.; ARDIGÒ, L.; SAIBENE, F. Mechanical determinants of the minimum energy cost of gradient running in humans. J. Exp. Biol. v. 195, p. 211–225, 1994.

MILLET, G.; VLECK, G. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training. Br J Sports Med. v. 34, p. 384–390, 2010. doi

MILLET, G.; LEPERS, R.; MAFFIULETTI, N.; BABAULT, N.; MARTIN, G.; LATTIER, G. Alterations of neuromuscular function after an ultramarathon. J Appl Physiol. v. 92, n. 2, p. 486-492, 2002.

MIZRAHI, J.; VOLOSHIN, A.; RUSSEK, D.; VERBITSKY, O.; ISAKOV, E. The influence of fatigue on emg and impact acceleration in running. Basic Appl Myol. v. 7, n. 2, p. 111-118, 1997.

MORIN, J.; JEANNIN, T.; CHEVALLIER, B.; BELLI, A. Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. Int J Sports Med. v. 27, n. 2, p. 158-165, 2006. doi

NIGG, B.; MACINTOSH, B.; MESTER, J. Biomechanicsand Biology of Movement. In Contractile Changes and Mechanisms of Muscle Fatigue (ed. B.R. MacIntosh and D.G. Allen) pp. 365-383. Champaing: Human Kinetics, 2000.

NOAKES, T. How did AV Hill understand the VO2max and the ‘‘plateau phenomenon’’? Still no clarity? Br. J. Sports Med. v. 42, p. 574-580, 2009. doi

NOVACHECK, T. The biomechanics of running. Gait and Posture. v. 7, p.77–95, 1998. doi

NUMMELA, A.; RUSKO, H. MERO, A. EMG activities and ground reaction forces during fatigued and non fatigued sprinting. Med Sci Sports Exerc. v. 26, n. 5, p. 605-609, 1994. doi

NYLAND, J.; SHAPIRO, R.; STINE, R.; HORN, T.; IRELAND, M. Relationship of fatigued run and rapid stop to ground reaction forces, lower extremity kinematics, and muscle activation. J Orthop Sports Phys Ther. v. 20, n. 3, p. 132-137, 1994. doi

PEYRÉ-TARTARUGA, L.; COERTJENS, M.; BLACK, G.; TARTARUGA, M.; RIBAS, L.; KRUEL, L. Efeitos da fadiga na cinemática de corredores. Rev Bras Biomec. v. 4, n. 6, p. 39-44, 2003.

SAHLIN, K.; TONKONOGI, M.; SÖDERLUND, K. Energy supply and muscle fatigue in humans. Acta Scand Physiol. v. 162, p. 261-266, 1998. doi

SAIBENE, F.; MINETTI, A. Biomechanical and physiological aspects of legged locomotion in humans. Eur J Appl Physiol. v. 88, n. 4-5, p. 297-316, 2003. doi

SALDANHA, A.; EKBLOM, M.; THORSTENSSON, A. Central fatigue affects plantar flexor strength after prolonged running. Scand J Med Sci Sports. v. 18, n. 3, p. 383-388, 2008. doi

SANTOS, A.; ROCHA, E.; LOSS, J. Comparação do torque de resistência externo de exercícios de flexão do cotovelo. In: XII CONGRESSO BRASILEIRO DE BIOMECÂNICA, 2007, Rio Claro. Anais. 2007. CD-ROM.

SCHMALZ, T; BLUMENTRITT, S.; JARASCH, R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: The infl uence of prosthetic alignment and different prosthetic components. Gait Posture. v. 16, p. 255-263, 2002. doi

SEPULVEDA, F.; GRANAT, M.; CLIQUET, A. Gait restoration in a spinal cord injured subject via neuromuscular electrical stimulation controlled by an artifi cial neural network. Inter J of Artif Organs., v. 21, n. 1, pp 49-62, 1998.

SLAWINSKI, J.; HEUBERT, R.; QUIEVRE, J.; BILLAT, V.; HANNON, C. Changes in spring-mass model parameters and energy cost during track running to exhaustion. J Strength Cond Res. v. 22, n. 3, p. 930 936, 2008.

TAYLOR, J.; GANDEVIA, S. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol. v. 104, p. 542–550, 2008. doi

VØLLESTAD, N. Measurement of human muscle fatigue. J Neurosci Meth. v. 74, p. 219–227, 1997. doi

WATERS, R.; PERRY, J. Energy cost of walking of amputees: the infl uence of level of amputation. J Bone Joint Surg Am., v. 58, p. 42-46, 1976.

WEIR, J.; BECK, T.; CRAMER, J.; HOUSH, T. Is fatigue all in your head? A critical review of the central governor model. Br J Sports Med. v. 40, p. 573–586, 2006. doi

WEHRLIN, J.; HALLEN, J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. v. 96, p. 404–412, 2006. doi

WOLEDGE, R.; CURTIN, N.; HOMSHER, E. Energetic Aspects of Muscle Contraction. Londres: Academic Press, 1985.