Купить СНПЧ А7 Архангельск, оперативня доставка


Drying and Isotherms of Sugar Cane Bagasse

DOI: http://dx.doi.org/10.13083/1414-3984/reveng.v23n2p128-142



Joyce M. G. da Costa1, Jefferson L. G. Corrêa2, Bruno E. Fonseca3, Flávio M. Borém4 & Soraia V. Borges5


Abstract: Sugarcane is nowadays considered an important source of energy. One of its products is sugarcane bagasse. Bagasse is largely used as a boiler fuel. The goal of this work was to study bagasse drying in a fixed bed and its desorption isotherm. Air was used as drying agent at 40, 50 and 60 ºC at flow rate of 0.9 m s-1. Desorption isotherms were also obtained at 40 and 50 ºC. Several models from literature were tested with regards to their fit to fixed bed drying and desorption isotherm data. The best adjustments were obtained with Modified Page 2 model for drying kinetics and both the Jaafar and Michalowski model and modified Henderson 2 model for the desorption isotherm.

Keywords: biomass, drying, energy.


Resumo: A cana de açúcar é considerada, hoje em dia, como uma importante fonte de energia. Um de seus produtos é o bagaço de cana. O bagaço é muito utilizado como combustível para caldeiras. O objetivo deste trabalho foi o estudo da secagem de bagaço de cana em um leito fixo e de sua isoterma de desorção. O ar foi utilizado como agente de secagem a 40, 50 e 60 ºC e 0,9 m s-1. As isotermas de desorção foram também obtidas a 40 e 50 ºC. Vários modelos da literatura foram testados para o ajuste da secagem em leito fixo e para os dados de isoterma. Os melhores ajustes foram obtidos com uma modificação do modelo de Page (modified Page 2), para cinética de secagem e com os modelos de Jaafar e Michalowski e uma modificação do modelo de Henderson (modified Henderson II)  para as isotermas de desorção.

Palavras-chave: biomassa, secagem, energia.


1 Engenheira de.Alimentos, Prof do UFVJM,/ICT/ Diamantina-MG, joyce.costa@ict.ufvjm.edu.br
2 Engenheiro Químico, Prof da UFLA/Lavras-MG, jefferson@dca.ufla.br
3 Engenheiro de Automação, Mestrando em Eng. de Sistemas e Automação, UFLA/Lavras-MG, brunoelyezerfonseca@yahoo.com.br
4 Agrônomo, Prof. da UFLA/Lavras-MG, flavioborem@deg.ufla.br.
5 Engenheira Química, Prof. da UFLA/Lavras-MG, sborges@dca.ufla.br


Literatura Citada

ANDERSON, R. B.; HALL, W.K. Sorption Studies on American Coals. Journal of the American Chemical Society, v.70, p.1727-1734, 1948. doi

ALARCÓN, G.A.R.; JÚSTIZ, M.A.B. Industrial device for drying and classifying sugar cane bagasse. International Sugar Journal, v.95, p.319-322, 1993.

AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists. Official Method 934.06. AOAC International, Arlington, VA, USA, 1990.

AYENSU, A. Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, v.59, p.121-126, 1997. doi

BELTING, K.W.; SEMRAU, P.G. Bagasse drying by flash-drier in Brazil and some theoretical considerations. Zuckerindustrie, v.134, p.413417 , 2009.

CAI, J.; CHEN, S. Determination of Drying Kinetics for Biomass by Thermogravimetric Analysis under Nonisothermal Condition. Drying Technology, v.26, p.1464-1468, 2008. doi

CAURIE, M. A new model equation for predicting safe moisture levels for optimum stability of dehydrated foods. Journal of Food Technology, v.5, p.301-307, 1970. doi

CORRÊA, J.L.G.; GRAMINHO, D.R.; SILVA, M.A.; NEBRA, S.A. Cyclone as a sugar cane bagasse dryer. Chinese Journal of Chemical Engineering, v.12, p.826-830, 2004.

DE OLIVEIRA, L.F.; CORRÊA, J.L.G.; TOSATO, P.G.; Borges, S.V.; Alves, J.G.L.F.; Fonseca, B.E. Sugarcane bagasse drying in a cyclone: Influence of device geometry and operational parameters. Drying Technology, v.29, p.946-952, 2011. doi

DE TERMMERMAN, J.; VERBOVEN, P.; DELCOUR, J.A.; NICOLAÏ, B.; RAMON, H. Drying model for cylindrical pasta shapes using desorption isotherms. Journal of Food Engineering, v.86, p.414-421, 2008. doi

DIAS, M.O.S.; ENSINAS, A.V.; NEBRA, S.A.; MACIEL FILHO, R.; ROSSELL, C.E.V.; MACIEL, M. R.W. Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. Chemical Engineering Research & Design, v.87, p.1206-1216, 2009. doi

DOYMAZ, I.; GOREL, O.; AKGUN, N.A. Drying characteristics of the solid by-product of olive oil extraction. Biosystems Engineering, v.88, p.213219, 2004. doi

DOYMAZ, I. Convective air drying characteristics of thin layer carrots. Journal of Food Engineering, v.61, p.359-364, 2004. doi

DOYMAZ, I. Thin-layer drying behavior of mint leaves. Journal of Food Engineering, v.74, p.370375 , 2006. doi

DOYMAZ, I. Convective drying kinetics of strawberry. Chemical Engineering and Processing, v.47, p.914-919, 2008. doi

FURMANIAK, S.; TERZYK, A.P.; GOLEMBIEWSKI, R.; GAUDEN, P.A.; CZEPIRSKI, L. Searching the most optimal model of water sorption on foodstuffs in the whole range of relative humidity. Food Research International, v.42, p.1203-1214, 2009. doi

GUNHAN, T.; DEMIR, V.; HANCIOGLU, E.; HEPBASLI, A. Mathematical modelling of drying or bay leaves. Energy Conversion and Management, v.46, p.1667-1679, 2005. doi

HAILWOOD, A.J.; HORROBIN, S.S. Adsorption of water by polymers: analysis in terms of a simple model. Transactions of the Faraday Society, v.42B, p.8492, 1946.

HALSEY, G.J. Physical adsorption on non-uniform surfaces. Journal of Chemical Physical, v.16, p.931-937, 1983. doi

HARKINS, W.; JURA, G. Surface of solids. X. Extension of the attractive energy of a solid into an adjacent liquid or film, the decrease of energy with distance, and the thickness of films. Journal American Chemical Society, v.66, p.919-927, 1944. doi

HENDERSON, S.M.; PABIS, S. Grain drying theory I: temperature effect on drying coefficient. Journal of Agricultural Engineering Research, v.6, p.169-174, 1961.

HOSSAIN, M.A.; WOODS, J.L.; BALA, B.K. Single-layer drying characteristics and colour kinetics of red chilli. International Journal of Food Science and Technology, v.42, p.13671375 , 2007. doi

HUTTIG, G.F.; THEIMER, O. Zur theorie der adsorption I. Colloid & Polymer Science, v.119, p.69-73, 1950.

JAAFAR, F.; MICHALOWSKI, S. Modified BET equation for sorption/dessorption isotherms. Drying Technology, v.8, p.811-827, 1990. doi

JAIN, C.K.; KUMAR, A.; IZAZY, M.H. Color removal from paper mill effluent through adsorption technology. Environmental Monitoring and Assessment, v.149, p.343-348, 2009. doi

LORA, E.S.; ANDRADE, R.V. Biomass as energy source in Brazil. Renewable & Sustainable Energy Reviews, v.13, p.777-788, 2009. doi

KROKIDA, M.K.; MAROULIS, Z.B.; KREMALIS, C. Process design of rotary dryers for olive cake. Drying Technology, v.20, p.771-787, 2002. doi

KÜHN, I. Adsorption isotherms. Journal of College Science, Japan, Tokyo, v.19, p.685-698, 1964.

KUROZAWA, L.E.; EL-AOUAR, A.A.; MURR, F.E.X. Obtenção de isotermas de dessorção de cogumelo in natura e desidratado osmoticamente. Ciência e Tecnologia de Alimentos, v.25, p.828834, 2005. doi

MADAMBA, P.S.; DRISCOLL, R.H.; BUCKLE, K.A. Drying Techonology, v.13, p.295-317, 1995. doi

MADHIYANON, T.; PHILA A.; SOPONRONNARIT, S. Models of fluidized bed drying for thin-layer chopped coconut. Applied Thermal Engineering, v.29, p.2849-2854, 2009. doi

MAZUTTI, M.A.; ZABOT, G.; BONI, G.; SKOVRONSKI, A.; OLIVEIRA, D.; DI LUCCIO, M.; OLIVEIRA, J.V.; RODRIGUES, M.I.; TREICHEL, H.; MAUGERI, F. Mathematical modeling of thin-layer drying of fermented and non-fermented sugarcane bagasse. Biomass and bioenergy, v.34, p.780-786, 2010. doi

MIDILLI, A.; KUCUK, H.; YAPAR, Z. A new model for single-layer drying. Drying Technology, v.20, p.1503-1513, 2002. doi

MODA, E.M.; HORII, J.; SPOTO, M.H.F. Edible mushroom Pleurotus sajor-caju production on washed and supplemented sugarcane bagasse. Scientia Agricola, v.62, p.127-132, 2005. doi

MORGADO, I.F.; CARNEIRO, J.G.A.; LELES, P.S.S.; BARROSO, D.G. Resíduos agroindustriais prensados como substrato para a produção de mudas de cana-de-açúcar. Scientia Agricola, v.57, p.709-712, 2000. doi

NASCIMENTO, F.R.; TOSATO, P.G.; CORRÊA, J.L.G. Sorption isotherms for food stocks: study of models agreement. Proceeding 16th International Drying Symposium, Hyderabad, India, 2008.

NEBRA, S.A.; MACEDO, I.C. Bagasse particle shape and size and their free-setting velocity. International Sugar Journal, v.90, p.168-170, 1988.

NGUYEN, T.L.T.; HERMANSEN, J.E.; SAGISAKA, M. Fossil energy savings potential of sugar cane bio-energy systems. Applied Energy, v.86, p.S132–S139, 2009. doi

OVERHULTS, D.G.; WHITE, G.M.; HAMILTON, H.E.; ROSS, I.J. Drying soybeans with heated air. Transactions of the ASAE, v.16, p.112-113, 1973. doi

PAGE, G.E. Factors influencing the maximum of air drying shelled corn in thin layer. 1995. 103f. Thesis (Physical doctor), Purdue University, Indiana, 1949.

PAKOWSKI, Z. DryPak v.1.3. Society of Polish Consultants, Lodz Office, 1995.

PALACIOS-BERECHE, R. MOSQUEIRASALAZAR, K.J.; MODESTO, M.; ENSINAS, A.V. NEBRA, S.A.; SERRA, L.M.; LOZANO, M.A. Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane. Energy, v.62, p.46-61, 2013. doi

PELEG, M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. Journal of Food Process Engineering, v.16, p.21-37, 1993. doi

PEREIRA, R.A.N.; FERREIRA, W.M.; GARCIA, S.K.; PEREIRA, M.N.; BERTECHINI, A.G. Digestibilidade do bagaço de cana-de-açúcar tratado com hidróxido de sódio em dietas para coelhos em crescimento. Ciência e Agrotecnologia, v.32, p.573-577, 2008. doi

PURANIK, V.S.; YARNAL, G.S. Improved method of bagasse drying for energy saving in sugar industries. International Sugar Journal, v.111, p.572-581, 2009.

RASUL, M.G.; RUDOLPH, V.; CARSKY, M. Physical properties of bagasse. Fuel, v.78, p.905-910, 1999. doi

RÍPOLI, T.C.C.; MOLINA JR. W.F.; RÍPOLI, M.L.C. Energy potential of sugar cane biomass in Brazil. Scientia Agricola, v.57, p.677-681, 2000. doi

ROCHA, M.H.H.; SUSIN, I.; PIRES, A.V.; FERNANDES, J.D.; MENDES, C.Q. Performance of Santa Ines lambs fed diets of variable crude protein levels. Scientia Agricola, v.61, p.141-145, 2004. doi

SHARAFELDEEN, Y.I.; BLAISDELL, J.L.; HAMDY, M.Y. A model for ear corn drying. Transactions of the ASAE, v.23, p.1261, 1980. doi

SHI, J.L.; PAN, Z.L.; MCHUGH, T.H.; WOOD, D.; HIRSCHBERG E.; OLSON, D. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. Lwt-Food Science and Technology, v.41, p.19621972, 2008. doi

SIQUEIRA, F.G.; DIAS, E.S.; DA SILVA, R.; MARTOS, E.T.; RINKER, D.L. Cultivation of Agaricus blazei ss. Heinemann using different soils as source of casing materials. Scientia Agricola, v.66, p.827-830, 2009. doi

SOBUKOLA, O.P.; DAIRO, O.U.; ODUNEWU, A.V. Convective hot air drying of blanched yam slices. International Journal of Food Science and Technology, v.43, p.1233-1238, 2008. doi

SOSA-ARNAO, J.H.; NEBRA, S.A. Bagasse Dryer Role in the Energy Recovery of Water Tube Boilers. Drying Technology, v.27, p.587-594, 2009. doi

SOSA-ARNAO, J.H.; CORRÊA, J.L.G.; SILVA, M.A.; NEBRA, S.A. Sugar cane bagasse drying: a review. International Sugar Journal, v.108, p.381-392, 2006.

TIRADO, M.L.B.; AREA, C.M.; VELEZ, H.E. Optimizing alkaline sizing in sugar cane bagasse paper recycling. Cellulose Chemistry and Technology, v.43, p.179-187, 2009.

TRAYNER, P. Bagasse transport and storage for the Pioneer cogeneration project. International Sugar Journal, v.110, p.475-481, 2008.

VERMA, B.; SHUKLA, N.P. Removal of Nickel (II) from electroplating industry effluent by agrowaste carbons. Indian Journal Environmental Health, v.42, p.145-150, 2000.

VIJAYARAJ, B.; SARAVANAN, R.; RENGANARAYANAN. S. Studies on thin layer drying of bagasse. International Journal of Energy Research, v.31, p.422-437, 2007. doi

WANG, C.Y.; SINGH, R.P. A single layer drying equation for rough rice. The Society for Engineering in Agricultural, Food, and Biological Systems, Paper Nº 78-3001, 1978.

YALDIZ, O.; ERTEKIN, C. Thin layer solar drying of some different vegetables. Drying Technology, v.19, p.583-597, 2001. doi