Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Modulação da Dor na Síndrome Fibromiálgica: Um Distúrbio Termorregulatório?

DOI: http://dx.doi.org/10.18073/2358-4696/pajmt.v1n2p71-80

http://www.abraterm.com.br/revista/index.php/PAJTM/index 

downloadpdf

Marcos L. Brioschi1, Lin T. Yeng2, Joaci O. Araujo3, Maristela Z. Pezzucchi3 & Manoel J. Teixeira4

 

Resumo: Várias características da síndrome fibromiálgica (FM) sugerem alterações na atividade termorregulatória. Há uma sobreposição entre a termorregulação e a modulação nociceptiva que é consistente com os sintomas da síndrome. Diversos estudos que serão abordados nesta revisão descrevem aspectos comuns entre a regulação da dor e da temperatura que podem contribuir para a dor generalizada e persistente da FM. Foram evidenciadas diversas constatações na literatura que suportam esta ideia, como: a distribuição da gordura marrom (BAT) se assemelha a dos tender points; estresse e frio provocam hiperatividade simpática por estímulo de fibras C aferentes que inervam a BAT e os tecidos adjacentes e, estimulam a termogênese da BAT que agrava a hiperalgesia da FM, nas regiões correspondentes aos tender points; a atividade física atua de forma antagônica impedindo o recrutamento da BAT e alivia os sintomas; mulheres podem ser mais suscetíveis a FM, porque elas são menos capazes de iniciar a termogênese adaptativa do que os homens; a ativação da BAT tem uma ação vasoconstritiva periférica, mas aumenta a temperatura supraclavicular; a termografia infravermelha pode registrar a ativação da BAT na FM por meio do sinal do manto; teste de imersão das mãos ou pés em água a 20ºC avaliam a referida ativação. Embora não seja um diagnóstico definitivo, o fenômeno do manto juntamente com a vasoconstrição periférica podem apoiar o diagnóstico clínico e desempenhar função importante no seguimento dos pacientes com FM como marcadores da disfunção neurovegetativa presente nesta doença.

Palavras-chave: termorregulação, nocicepção, termogêneses, termografia, adrenérgico, simpático, temperatura, fibromialgia.

 

Abstract: Several characteristics from Fibromyalgia Syndrome (FMS) suggest alterations in the thermoregulatory activity. There is an overlap between thermoregulation and nociceptive modulation, consistent with the symptoms of the syndrome. Several studies, addressed in this review, describe common aspects between the regulation of pain and temperature, what may contribute to the generalized and persistent pain of FMS. Several findings, evidenced in the literature, support this idea: the distribution of Brown Fat (BAT) resembles the tender points; stress and cold cause sympathetic hyperactivity stimulating afferent fibers C, innervating BAT and adjacent tissues. They stimulate thermogenesis of BAT, which exacerbates hyperalgesia of FMS in regions corresponding to the tender points; physical activity acts in an antagonistic way, avoiding the BAT recruitment and alleviating the symptoms; women may be more susceptible to FMS, because they are less capable of initiating adaptive thermogenesis than men. The activation of the BAT has a peripheral vasoconstriction action, but it increases the supraclavicular temperature. Infrared thermography may record the activation of BAT in the FMS through the mantle signal. Hands or feet immersion in water at 20ºC test evaluates the aforementioned activation. Although not a definitive diagnosis, the phenomenon of the mantle and peripheral vasoconstriction may support the clinical diagnosis, having an important role in monitoring patients with FMS, as markers of autonomic dysfunction, present in this disease.

Key words: thermoregulation, thermogenesis, nociception, adrenergic, sympathetic, temperature, thermography, fibromyalgia

 

1 Co-coordenador Especialização em Termologia Clínica e Termografia,- FMUSP, São Paulo-SP, Brasil.
2 Professora doutora.responsável pelo Grupo de Dor do Instituto de Ortopedia e Traumatologia do HC-FMUP, São Paulo-SP, Brasil.
3 Especialização em Termologia Clínica e Termografia,- FMUSP, São Paulo-SP, Brasil.
4 Professor titular em Neurocirurgia, Responsável pelo Centro de Dor, Coordenador Especialização em Termologia Clínica e Termografia - HC-FMUSP, São Paulo-SP, Brasil.

 

Literatura Citada

Wolfe F, Smythe HA, Yunus MB, et al. The American College of Rheumatology 1990 Criteria for the classification of fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990;33:160–172. https://doi.org/10.1002/art.1780330203

Buskila D, Neumann L. Musculoskeletal injury as a trigger for fibromyalgia/posttraumatic fibromyalgia. Curr Rheumatol Rep. 2000;2:104– 108. https://doi.org/10.1007/s11926-000-0049-z

Julien N, Goffaux P, Arsenault P, et al. Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition. Pain. 2005;114:295–302. https://doi.org/10.1016/j.pain.2004.12.032

Skuse D, Albanese A, Stanhope R, et al. A new stress-related syndrome of growth failure and hyperphagia in children, associated with reversibility of growth-hormone insufficiency. Lancet. 1996;348:353–358. https://doi.org/10.1016/S0140-6736(96)01358-X

Jeschonneck M et al. Abnormal microcirculation and temperature in skin above tender points in patients with fibromyalgia. Rheumatology. 2000; 39:917–921. https://doi.org/10.1093/rheumatology/39.8.917

Larson AA, Pardo JV, Pasley JD. Review of overlap between thermoregulation and pain modulation in fibromyalgia. Clin J Pain. 2014 Jun;30(6):544-55. https://doi.org/10.1097/AJP.0b013e3182a0e383

Elert J, Kendall SA, Larsson B, et al. Chronic pain and difficulty in relaxing postural muscles in patients with fibromyalgia and chronic whiplash associated disorders. J Rheumatol. 2001;28:1361–1368.

Okifuji A, Donaldson GW, Barck L, et al. Relationship between fibromyalgia and obesity in pain, function, mood, and sleep. J Pain. 2010;11:1329–1337. https://doi.org/10.1016/j.jpain.2010.03.006

Martinez-Lavin M et al. Norepinephrineevoked pain in fibromyalgia. A randomized pilot study. BMC Musculoskelet Disord. 2002;3:2–8. https://doi.org/10.1186/1471-2474-3-2

Cohen H, Neumann L, Glazer Y, et al. The relationship between a common catechol-Omethyltransferase (COMT) polymorphism val(158) met and fibromyalgia. Clin Exp Rheumatol. 2009;27:S51–S56

Rodriguez E, Monjo M, Rodriguez-Cuenca S, et al. Sexual dimorphism in the adrenergic control of rat brown adipose tissue response to overfeeding. Pflugers Arch. 2001;442:396–403. https://doi.org/10.1007/s004240100556

Rodriguez-Cuenca S, Pujol E, Justo R, et al. Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J Biol Chem. 2002;277:42958–42963. https://doi.org/10.1074/jbc.M207229200

Kuroshima A, Habara Y, Uehara A, et al. Cross adaption between stress and cold in rats. Pflugers Arch. 1984;402:402–408. https://doi.org/10.1007/BF00583941

Bengtsson A, Bengtsson M. Regional sympathetic blockade in primary fibromyalgia. Pain. 1988; 33:161–167. https://doi.org/10.1016/0304-3959(88)90086-3

Martinez-Jauand M et al. Pain sensitivity in fibromyalgia is associated with catechol-Omethyl transferase (COMT) gene. Eur J Pain. 2013;17:16–27. https://doi.org/10.1002/j.1532-2149.2012.00153.x

Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359. https://doi.org/10.1152/physrev.00015.2003

Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–E452. https://doi.org/10.1152/ajpendo.00691.2006

Sbarbati A, Cavallini I, Marzola P, et al. Contrast-enhanced MRI of brown adipose tissue after pharmacological stimulation. Magn Reson Med. 2006;55:715–718. https://doi.org/10.1002/mrm.20851

Osaka T, Kobayashi A, Namba Y, et al. Temperature and capsaicin-sensitive nerve fibers in brown adipose tissue attenuate thermogenesis in the rat. Pflugers Arch. 1998; 437:36–42. https://doi.org/10.1007/s004240050743

Nishiyori M, Ueda H. Prolonged gabapentin analgesia in an experimental mouse model of fibromyalgia. Mol Pain. 2008;4:52–58. https://doi.org/10.1186/1744-8069-4-52

Vaeroy H, Helle R, Forre O, et al. Elevated CSF levels of substance P and high incidence of Raynaud phenomenon in patients with fibromyalgia: new features for diagnosis. Pain. 1988;32:21–26. https://doi.org/10.1016/0304-3959(88)90019-X

Mory, G., Bouillaud, F., Combes-George, M., Ricquier, D., 1984. Noradrenaline controls the concentration of uncoupling protein in brown adipose tissue. FEBS Lett. 166, 393-396. https://doi.org/10.1016/0014-5793(84)80120-9

Trayhurn P, Milner RE. A commentary on the interpretation of in vitro biochemical measures of brown adipose tissue thermogenesis. Can. J. Physiol. Pharmacol. 67, 811-819, 1989. https://doi.org/10.1139/y89-128

Vaeroy H, Helle R, Forre O, et al. Elevated CSF levels of substance P and high incidence of Raynaud phenomenon in patients with fibromyalgia: new features for diagnosis. Pain. 1988;32:21–26. https://doi.org/10.1016/0304-3959(88)90019-X

Bickel, H., Radermacher, H., 1994. Thermographie einer erwachenden Fledermaus. Biol. unserer Z. 24 (3), 129-130.

Oya, A., Asakura, H., Koshino, T., Araki, T., 1997. Thermographic demonstration of nonshivering thermogenesis in human new-borns after birth: its relation to umbilical gases. J. Perinatal Med. 25 (5), 447-454. https://doi.org/10.1515/jpme.1997.25.5.447

Rothwell, N.J., Stock, M.J., 1979. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31-35. https://doi.org/10.1038/281031a0

Krattenmacher, R., Rubsamen, K., 1987. Thermoregulatory significance of nonevaporative heat loss from the tail of the coypu (Myocastor coypus) and the tammer-wallaby (Macropus eugenii). J. Therm. Biol. (22), 109-116.

Astrup, A., 1986. Thermogenesis in human brown adipose tissue and skeletal muscle induced by sympathomimetic stimulation. Acta Endocrinol. 278, 112-132. https://doi.org/10.1530/acta.0.112s009

Contaldo, F., E. Presta, G. Di biase, L. Scalfi, M. Mancini, G. Maddalena, O. Di Divitiis, P. Rwco, 1981. Preliminary evidence for brown fat defect in human obesity. pp. 143-146. In: The Body Weight Regulatory System: Normal and Disturbed Mechanisms, Ed. L.A. Cioffi, W.P.T. James, T.B. Van Itallie. Raven Press, New York Jansky, L., 1973. Non-shivering thermogenesis and its thermoregulatory significance. Biol. Rev. 48, 85-132.

Puchalski, W., Bockler, H., Heldmaier, G., Langefeld, M., 1987. Organ blood ¯ow and brown adipose tissue oxygen consumption during Noradrenaline induced non-shivering thermogenesis in the Djungarian hamster. J. Exp. Zool. 242, 263-271. https://doi.org/10.1002/jez.1402420304

Feist, D.D., Rosenmann, M., 1976. Norepinephrine thermogenesis in seasonally acclimitized and cold acclimated red-backed voles in Alaska. Can. J. Physiol. Pharmacol. 54,146-153. https://doi.org/10.1139/y76-023

Rafael, J., Vsiansky, P., Heldmaier, G., 1985. Increased contribution of brown adipose tissue to non-shivering thermogenesis in Djungarian hamster during cold-adaptation. J. Comp. Physiol. B 155, 717-722. https://doi.org/10.1007/BF00694586

Lee P, Ho KK, Greenfield JR. Hot fat in a cool man: infrared thermography and brown adipose tissue. Diabetes Obes Metab 2011;13:92-3. https://doi.org/10.1111/j.1463-1326.2010.01318.x

Vaeroy H, Qiao Z, Morkrid L, Forre O. Altered sympathetic nervous system response in patients with fibromyalgia. J Rheumatol. 1989;16:1460–1465.

Brioschi ML. Índice termográfico infravermelho no diagnóstico complementar da fibromialgia. São Paulo, 2008. Tese (PósDoutorado) – Faculdade de Medicina, Departamento de Neurologia FMUSP, Universidade de São Paulo. 152 p.

Saito M. Brown adipose tissue as a regulator of energy expenditure and body fat in humans. Diabetes Metab J. 2013 Feb;37(1):22-9. https://doi.org/10.4093/dmj.2013.37.1.22

Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009 Apr 9;360(15):1509-17. https://doi.org/10.1056/NEJMoa0810780

Blumberg, M.S., Deaver, K., Kirby, R.F., 1999. Leptin disinhibits non-shivering thermogenesis in infants after maternal separation. Am. J. Physiol. 276 (45), R606-R610.

Speakman, J.R., Ward, S., 1998. Infrared thermography: principles and applications. Zoology-Anal. Complex Systems 101 (3), 224-232.

Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol. 2007;34:377–384. https://doi.org/10.1111/j.1440-1681.2007.04590.x

Brioschi ML. Metodologia de normalização de análise do campo de temperaturas em imagem infravermelha humana. Curitiba, 2011. Tese (Doutorado) – Faculdade de Medicina, Departamento de Engenharia Mecânica UFPR, Universidade Federal do Paraná. Curitiba. 115 p.

Symonds ME, Henderson K, Elvidge L, Bosman C et al. Thermal imaging to assess agerelated changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr. 2012 Nov;161(5):892-8. https://doi.org/10.1016/j.jpeds.2012.04.056

Brioschi ML, Yeng LT, Pastor EMH, Colman D, Silva FMRM, Teixeira MJ. Documentation of myofascial pain syndrome with infrared imaging. Acta Fisiatr 2007; 14(1): 41–8.

Brioschi ML, Yeng LT, Pastor EMH, Teixeira MJ. Infrared imaging use in rheumatology. Rev Bras Reumatol 47:42-51, 2007. https://doi.org/10.1590/S0482-50042007000100008

Biasi G, Fioravanti A, Franci A, Marcolongo R. The role computerized telethermography in the diagnosis of fibromyalgia syndrome. Minerva Med 85:451-4, 1994.

Ammer, K., Engelbert, B., and Kern, E. Reproducibility of the hot spot count in patients with fibromyalgia, an intra- and inter-observer comparison. Thermol. Int., 11, 143, 2001.