Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Introdução à Compressão de Sinais

DOI: http://dx.doi.org/10.12721/2237-5112.v01n01a07

http://www.rtic.com.br

downloadpdf

F. Madeiro1 & Waslon T. A. Lopes2

 

Resumo: Este artigo apresenta fundamentos basicos de compressão de sinais. São apresentados e discutidos os parâmetros de desempenho de um sistema de compressão de sinais, a saber: qualidade dos sinais reconstruídos (distorção), taxa de bits, complexidade e retardo. É definida, com brevidade, uma operação importante em sistemas de compressão de sinais: a quantização. Nesse contexto, o artigo apresenta uma visão geral da quantização vetorial. O uso de transformadas também é abordado. Nesse cenário, são apresentados fundamentos da transformada wavelet discreta e discutidas questões relacionadas à aplicação em compressão de imagens. Por fim, são apresentadas algumas direções de pesquisa na área de compressão de sinais.

 

1 Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, PE, Brasil. E-mail: madeiro@iecom.org.br 

2 Universidade Federal de Campina Grande, Campina Grande, PB, Brasil. E-mail: waslon@iecom.org.br

 

Literatura Citada

[1] Haykin, S. Digital Communications. John Wiley & Sons, 1988.
[2] Jayant, N. S. and Noll, P. Digital Coding of Waveforms. Prentice-Hall, Englewood Cliffs, NJ, 1984.
[3] Gersho, A. and Gray, R. M. Vector Quantization and Signal Compression. Kluwer Academic Publishers, Boston, MA, 1992.
[4] Gray, R. M. “Vector Quantization”. IEEE ASSP Magazine, pp. 4–29, April 1984.
[5] Linde, Y., Buzo, A., and Gray, R. M. “An Algorithm for Vector Quantizer Design”. IEEE Transactions on Communications, Vol. COM - 28, No. 1, pp. 84–95, January 1980. doi
[6] Ramamurthi, B. and Gersho, A. “Classified Vector Quantization of Images”. IEEE Transactions on Communications, Vol. COM-34, No. 11, pp. 1105–1115, November 1986. doi
[7] Moayeri, N., Neuhoff, D. L., and Stark, W. E. “Fine-Coarse Vector Quantization”. IEEE Transactions on Signal Processing, Vol. 39, No. 7, pp. 1503–1515, July 1991. doi
[8] Zeger, K., Vaisey, J., and Gersho, A. “Globally Optimal Vector Quantizer Design by Stochastic Relaxation”. IEEE Transactions on Signal Processing, Vol. 40, No. 2, pp. 310–322, February 1992. doi
[9] Kohonen, T. “The Self-Organizing Map”. Proceedings of the IEEE, Vol. 78, No. 9, pp. 1464–1480, September 1990.
[10] Madeiro, F., Vilar, R. M., Fechine, J. M., and Aguiar Neto, B. G. “A Self-Organizing Algorithm for Vector Quantizer Design Applied to Signal Processing”. International Journal of Neural Systems, Vol. 9, No. 3, Special Issue on Neural Networks in Brazil: V Brazilian Symposium on Neural Networks, pp. 219–226, June 1999.
[11] Karayiannis, N. B. and Pai, P.-I. “Fuzzy Vector Quantization Algorithms and Their Applications in Image Compression”. IEEE Transactions on Image Processing, Vol. 4, No. 9, pp. 1193–1201, September 1995. doi
[12] Pan, J. S., McInnes, F. R., and Jack, M. A. “VQ Codebook Design Using Genetic Algorithms”. Electronics Letters, Vol. 31, No. 17, pp. 1418–1419, 17th August 1995.
[13] Equitz, W. H. “A New Vector Quantization Clustering Algorithm”. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 10, pp. 1568–1575, October 1989. doi
[14] Eskicioglu, A. M. and Fischer, P. S. “Image Quality Measures and Their Performance”. IEEE Transactions on Communications, Vol. 43, No. 12, pp. 2959–2965, December 1995. doi
[15] Deller Jr., J. R., Proakis, J. G., and Hansen, J. H. L. Discrete-time Processing of Speech Signals. Macmillan Publishing Co., 1993.
[16] Aguiar Neto, B. G. Processamento e Transmissão Digital de Voz (Apostila). Curso de Pós Graduação em Engenharia Elétrica, Universidade Federal da Paraíba, Campina Grande - PB, 1995.
[17] Kubrick, A. and Ellis, T. “Classified Vector Quantisation of Images: Codebook Design Algorithm”. IEE Proceedings, Vol. 137, Pt. I, No. 6, pp. 379–386, December 1990.
[18] Jayant, N. “Signal Compression: Technology Targets and Research Directions”. IEEE Journal on Selected Areas in Communications, Vol. 10, No. 5, pp. 796–818, June 1992. doi
[19] Strang, G. and Nguyen, T. Wavelets and Filter Banks. Wellesley-Cambridge Press, 1996.
[20] Burrus, C. S., Gopinath, R. A., and Guo, H. Introduction to Wavelets and Wavelet Transforms. Prentice-Hall, New Jersey, 1998.
[21] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation”. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674–696, July 1989. doi
[22] Desarte, P., Macq, B., and Slock, D. T. M. “Signal-Adapted Multiresolution Transform for Image Coding”. IEEE Transactions on Information Theory, Vol. 38, No. 2, pp. 897–904, March 1992. doi
[23] Villasenor, J. D., Belzer, B., and Liao, J. “Wavelet Filter Evaluation for Image Compression”. IEEE Transactions on Image Processing, Vol. 4, No. 8, pp. 1053–1060, August 1995. doi
[24] Tewfik, A. H., Sinha, D., and Jorgensen, P. “On the Optimal Choice of a Wavelet for Signal Representation”. IEEE Transactions on Information Theory, Vol. 38, No. 2, pp. 747–765, March 1992. doi
[25] Liang, J. and Parks, T. W. “Image Coding Using Translation Invariant Wavelet Transforms with Symmetric Extensions”. IEEE Transactions on Image Processing, Vol. 7, No. 5, pp. 762–769, May 1998. doi
[26] Xiong, Z., Ramchandran, K., and Orchard, M. T. “Space-Frequency Quantization for Wavelet Image Coding”. IEEE Transactions on Image Processing, Vol. 6, No. 5, pp. 677–693, May 1997. doi
[27] Shapiro, J. M. “Embedded Image Coding Using Zerotrees of Wavelet Coefficients”. IEEE Transactions on Signal Processing, Vol. 41, No. 12, pp. 3445–3462, December 1993. doi
[28] Karlekar, J., Poonacha, P. G., and Desai, U. B. “Image Compression Using Zerotree and Multistage Vector Quantization”. Proceedings of the IEEE International Conference on Image Processing (ICIP’97), Vol. 2, pp. 610–613, 1997. doi
[29] Davis, G. M. and Nosratinia, A. “Wavelet-based Image Coding: An Overview”. Applied and Computational Control, Signals and Circuits, 1999.
[30] Shohan, Y. and Gersho, A. “Efficient Bit Allocation for an Arbitrary Set of Quantizers”. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 36, pp. 1445–1453, September 1988. doi
[31] Moulin, P. “A Multiscale Relaxation Algorithm for SNR Maximization in Nonorthogonal Subband Coding”. IEEE Transactions on Image Processing, Vol. 4, pp. 1269–1281, September 1995. doi
[32] Ramos, M. G., Hemani, S. S., and Tamburro, M. A. “Psyhovisually-Based Multiresolution Image Segmentation”. Proceedings of the IEEE International Conference on Image Processing (ICIP’97), pp. 66–69, 1997. doi
[33] H¨ontsch, I., Karan, L. J., and Safraanek, R. J. “A Perceptually Tuned Embedded Zerotree Image Coder”. Proceedings of the IEEE International Conference on Image Processing (ICIP’97), pp. 41–44, 1997. doi
[34] Ran, X. and Farvardin, N. “A Perceptually Motivated Three-Component Image Model – Part II: Applications to Image Compression”. IEEE Transactions on Image Processing, Vol. 4, No. 4, pp. 430–447, April 1995. doi
[35] Jayant, N., Johnston, J., and Safranek, R. “Signal Compression Based on Models of Human Perception”. Proceedings of the IEEE, Vol. 81, No. 10, pp. 1385–1422, October 1993. doi
[36] Ran, X. and Farvardin, N. “A Perceptually Motivated Three-Component Image Model – Part I: Description of the Model”. IEEE Transactions on Image Processing, Vol. 4, No. 4, pp. 401–415, April 1995. doi