Купить СНПЧ А7 Архангельск, оперативня доставка

crosscheckdeposited

Introdução ao Reconhecimento de Palavras Manuscritas

DOI: http://dx.doi.org/10.12721/2237-5112.v02n01a05

http://www.rtic.com.br

downloadpdf

Luciana R. Veloso1 & Francisco Madeiro2

 

Resumo: O avanço do conhecimento, a expansão da memória e a comunicação estão entre os benefícios proporcionados pela escrita, que constitui-se em um dos objetos da área de processamento de documentos. Dentre os desenvolvimentos relacionados a esta área, podem ser citados: sistemas de reconhecimento de caracteres manuscritos, de assinaturas, de numerais manuscritos, de palavras manuscritas e sistemas de filtragem frente-verso. Este artigo apresenta uma introdução ao reconhecimento de palavras manuscritas. São abordadas etapas importantes do sistemas de reconhecimento: pré-processamento, segmentação e classificação. O artigo aborda, ainda, técnicas utilizadas para o propósito do reconhecimento, com destaque para os modelos de Markov escondidos, as redes neurais artificiais e os métodos híbridos.

Palavras-chave: Processamento de documentos, reconhecimento de manuscritos, reconhecimento de palavras manuscritas, processamento digital de imagens, reconhecimento de padrões

 

1 Universidade Federal de Campina Grande (UFCG), Campina Grande, PB, Brasil. E-mail: veloso@dee.ufcg.edu.br

2 Escola Politécnica de Pernambuco (POLI), Universidade de Pernambuco (UPE), Recife, PE, Brasil. E-mail: madeiro@poli.br

 

Literatura Citada

[1] Plamondon, R. and Srihari, S. N., “On-Line and Off-Line Handwriting Recognition: A Comprehensive Survery,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.1, pp. 63–84, January 2000. doi

[2] Koerich, A. L., Sabourin, R. and Suen, C. Y., “Large Vocabulary Off-line Handwriting Recognition: A survey,” Pattern Analysis and Applications, vol. 6, pp. 97–121, 2003. doi

[3] Buse, R., Liu, Z.-Q. and Caelli, T. , “A Structural and Relational Approach to Handwritten Word Recognition,” IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, Vol. 27, No. 5, pp. 847–861, October 1997. doi

[4] El-Yacoubi, A., Gilloux, M., Sabourin, R. and Suen, C. Y., “Unconstrained Handwritten Word Recognition using Hidden Markov Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993. 

[5] Bozinovic, R. M., and Shihari, S. N., “Off-Line Cursive Script Word Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.11, No.1, pp. 68–83, January 1989. doi

[6] Kim, G. and Govindaraju, V., “A Lexicon Driven Approach to Handwritten Word Recognition for Real-Time Applications ,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 4, pp. 366–379, April 1997. doi

[7] Kim, G. and Govindaraju, V. , “Handwritten Phrase Recognition as Applied to Street Name Images,” Pattern Recognition, Vol. 31, No. 1, pp. 41–51, 1998. doi

[8] Ding, Y., Kimura, F., Miyake, Y. and Shridhar, M., “Accuracy Improvement of Slant Estimation for Handwritten Words,” Proceedings of the International Conference on Pattern Recognition - ICPR’00, pp. 527–530, 2000. 

[9] Slavík, P. and Govindaraju, V., “Equivalence of Different Methods for Slant and Skew Corrections in Word Recognition Applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23, No.3, pp. 323–326, March 2001. doi

[10] Côté, M., Lecolinet, E., Cheriet, M. and Suen, C. Y. , “Automatic Reading of Cursive Scripts Using a Reading Model and Perceptual Concepts,” International Journal on Document Analysis and Recognition, Vol. 1, pp. 3–17, 1998. doi

[11] Senior, A. W. and Robinson, A. J. , “An Off-Line Cursive Handwriting Recognition System,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 3, pp. 309–321, March 1998. doi

[12] Parker, J. R., Algorithms For Image Processing and Computer Vision. Wiley Computer Publishing, 1997. 

[13] Facon, J., Morfologia Matem´atica: Teoria e Exemplos., Universit´aria, Ed. PUC-PR, 1996. 

[14] Frucci, M. and Marcelli, A. , “Contour Pixel Classification for Character Skeletonization,” Proceedings of the First Brazilian Symposium of Document Image Analysis, pp. 141–152, November 1997. doi

[15] Borgefors, G., Ramella, G. and Baja, G. S. , “Using Binary Pyramids to Create Multi-resolution Shape Descriptors,” Proceedings of the First Brazilian Symposium of Document Image Analysis, pp. 129–140, November 1997. doi

[16] Gonzalez, R. C. and Woods, R. E. , Digital Image Processing, Addison-Wesley, Ed., 1992. 

[17] Lam, L. and Suen, C. Y. , “An Evaluation of Parallel Thinning Algorithms for Character Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 9, pp. 914–919, 1995. doi

[18] El Yacoubi, A., “Mod´elisation Markovienne de L’´Ecriture Manuscrite Application `a la Reconnaissance des Adresses Postales,” Thesis, Universite De Rennes 1, 1996. 

[19] El-Yacoubi, A., Gilloux, M., Sabourin, R. and Suen, C. Y., “An HMM-Based Approach for Off-Line Unconstrained Handwritten Word Modeling and Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21, No. 8, pp. 752–760, August 1999. doi

[20] Freitas, C., El-Yacoubi, A., Bortolozzi, F. and Sabourin, A., “Brazilian Bank Check Handwritten Legal Amount Recognition,” Anais do Simpósio Brasileiro de Computação Gráfica e Processamento de imagens- SIBGRAPI’2000, 2000. 

[21] Casey, R.G. and Lecolinet E. , “A Survey of Methods and Strategies in Character Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 7, pp. 690–706, 1996. doi

[22] Veloso, L. R., “Sistema de Reconhecimento de Palvras Manuscritas Dependente do Usuário,” Tese de Doutorado, Universidade Federal de Campina Grande, UFCG, Brasil, março 2009. 

[23] Mohamed, M. A. and Gader, P., “Generalized Hidden Markov Models - Part I: Theoretical Frameworks,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 1, pp. 67–81, 2000. doi

[24] Kim, J. H., Kim, K. K., Nadal, C. and Suen, C., “A methodology of Combining HMM and MLP Classifiers for Cursive Word Recognition,” Proceedings of the International Conference on Pattern Recognition - ICPR’00, pp. 319–322, 2000. 

[25] Kundu, M. and Bahl, P., “Recognition of handwritten script: A hidden markov model based approach,” Relatório Técnico, 1988. 

[26] Oliveira Jr., J. J., “Reconhecimento de Palavras Manuscritas Usando An´alise Multi-Vistas,” Tese de Doutorado, Universidade Federal de Campina Grande, 2006. 

[27] Grandidier, F., Sabourin, R., El-Yacoubi, A., Gilloux, M. and Suen, C., “Influence of Word Length on Handwriting Recognition,” 1999. [Online]. Available: http://citeseer.ist.psu.edu/grandidier99influence.html 

[28] Nunes, C. M., Britto, Ad. S., Jr.; Kaestner, C. A. A.; Sabourin, R., “An Optimized Hill Climbing Algorithm for Feature Subset Selection: Evaluation on Handwritten Character Recognition,” in Ninth International Workshop on Frontiers in Handwriting Recognition, 2004. doi

[29] Oliveira, L. S., Sabourin, R., Bortolozzi, F. and Suen, C. Y. , “A Methodology for Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Digit String Recognition,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 17, pp. 903–930, 2003. doi

[30] Morita, M., Oliveira, L.S. and Sabourin, R., “Geração Automática de Conjuntos de Classificadores Através da Seleção de Caracteríticas não Supervisionada,” IEEE Latin America Transactions, vol. 3, no. 5, pp. 50–56, 2005. 

[31] Oliveira, L. S., Morita, M. and Sabourin, R., “Feature Selection for Ensembles Applied to Handwriting Recognition,” International Journal on Document Analysis and Recognition, vol. 8, no. 4, pp. 262–279, 2006. doi

[32] Kim, J. H., Kim, K. K. and Suen, C. Y., “An HMM-MLP Hybrid Model for Cursive Script Recognition,” Pattern Analysis and Applications, vol. 3, pp. 314–324, 2000. doi

[33] Li, Z.C., Suen, C.Y., Guo, J., “A Regional Decomposition Method for Recognizing Handprinted Characters,” IEEE Transactions on Systems, Man, and Cybernetics, pp. 998–1010, 1995. doi

[34] Xu, L., Krzyzak, A. and Suen, C.,Y., “Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, Vol.22, No.3, pp. 418–435, May/June 1992. doi

[35] Suen, C., Kim, J., Kim, K., Xu, Q. and Lam, L., “Handwriting Recognition - The Last Frontiers,” Proceedings of the International Conference on Pattern Recognition - ICPR’00, pp. 1–10, September 2000. 

[36] Brakensiek, A., Kosmala, A., Willet, D., Wang, W. and Rigoll G., “Performance Evaluation of a New Modeling Technique for Handwriting Recognition Using Identical On-Line and Off- Line Data,” Proceedings of the V International Conference on Document Analysis and Recognition - ICDAR’99, Bangalore, India, 1999. 

[37] Dehghan, M., Faez, K., Ahmadi, M. and Shridhar, M., “Off-Line Unconstrained Farsi Handwritten Word Recognition Using Fuzzy Vector Quantization and Hidden Markov Word Models,” Proceedings of the International Conference on Pattern Recognition - ICPR’00, pp. 351–354, September 2000. 

[38] Knerr, S. and Augustian, E., “A Neural Network-Hidden Markov Model Hybrid for Cursive Word Recognition,” Proceedings of the International Conference on Pattern Recognition - ICPR’98, Vol. 2, pp. 1518–1520, 1998. 

[39] Ko A., Sabourin R., Britto Jr. A. and Oliveira L. S., “Pairwise Fusion Matrix for Combining Classifiers,” Pattern Recognition, vol. 40, no. 8, pp. 2198–2210, 2007. doi

[40] Oliveira, L. S. Sabourin, R., Bortolozzi, F. and Suen, C. Y., “Feature Selection for Ensembles: A Hierarchical Multi-Objective Genetic Algorithm Approach,” in In Proc. of 7 th International Conference on Document Analysis and Recognition, Edinburgh-Scotland, 2003. IEEE Computer Society, 2003, pp. 676–680. 

[41] Morita, M., Oliveira, L. S. and Sabourin, R., “Unsupervised Feature Selection for Ensemble of Classifiers,” in In 9th International Workshop on Frontiers in Handwriting Recognition, 2004, pp. 81–86. doi

[42] Liu, C.-L. and Marukawa, K., “Normalization Ensemble for Handwritten Character Recognition,” International Workshop on Frontiers in Handwriting Recognition,, vol. 0, pp. 69–74, 2004. 

[43] Srihari, S. N., Xu, A. and Kalera, M., “Learning Strategies and Classification Methods for Off-Line Signature Verification,” International Workshop on Frontiers in Handwriting Recognition, vol. 0, pp. 161–166, 2004. doi

[44] Haykin, S., Neural Networks - A Comprehensive Foundation. Upper Saddle River, New Jersey 07458: Prentice-Hall, Inc., 1999. 

[45] Beale, R. and Jackson, T., Neural Computing: An Introduction. Bristol and Philadelphia: Institute of Physics Publishing, 1990. doi

[46] Kohonen, T., Self-Organization and Associative Memory (3rd ed). Berlin: Springer-Verlag, 1989. doi

[47] Gader, P., Whalen, M., Ganzberger, M. and Hepp, D. , “Handprinted Word Recongition on a NIST Data Set,” Machine Vision and Application, Vol.8, pp. 31–40, 1995. doi

[48] Gader, P., Mohamed, M. and Chiang, J.-H. , “Comparison of Crisp and Fuzzy Character Neural Networks in Handwritten Word Recognition,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 3, pp. 357–363, August 1995. doi

[49] Rabiner, L. R. and Schafer, R. W., Digital Processing of Speech Signals. Upper Saddle River, New Jersey: Prentice-Hall, 1978. 

[50] Mohamed, M. A. and Gader, P, “Handwritten Word Recognition Using Segmentation-Free Hidden Markov Modeling and Segmentation-Based Dynamic Programming Techniques,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 5, pp. 548–554, May 1996. doi

[51] Mohamed, M. A. and Gader, P., “Generalized Hidden Markov Models - Part II: Application to Handwritten Word Recognition,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 1, pp. 82–94, 2000. doi

[52] Gillies, A.M., “Cursive Word Recognition Using Hidden Markov Models,” Proceedings of the Advanced Technology Conference - United States Postal Service, Vol. 1, 1992. 

[53] Chen, M.-Y., Kundu, A., Zhou, J. and Srihari, S. N., “Off-Line Handwritten Word Recognition Using Hidden Markov Models,” Proceedings of the Advanced Technology Conference - United States Postal Service, Vol. 1, 1992. 

[54] Chen, M.-Y., Kundu, A. and Zhou, J., “Off-Line Handwritten Word Recognition Using Hidden Markov Model Type Stochastic Network ,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.16, No. 5, pp. 481–496, May 1994. doi

[55] Chen, M.-Y., Kundu, A. and Srihari, N. , “Variable Duration Hidden Markov Model and Morphological Segmentation for Handwritten Word Recognition,” IEEE Transactions on Image Processing, Vol. 4, No. 12, pp. 1675 – 1687, December 1995. doi

[56] Gilloux, M., Leroux, M. and Bertille, J.-M. , “Strategies for Hanwritten Words Recognition Using Hidden Markov Models,” Proceedings of the International Conference on Document Analysis and Recognition - ICDAR’93, pp. 299–304, 1993. 

[57] Bunke, H., Roth, M. and Schukatt-Talamazzini, E.G., “Off-line Cursive Handwriting Recognition using Hidden Markov Models,” Relatório Técnico, IAM-94-008, Institut fúr Informatik und angewandle Mathematic, Universität Bern, 1994. 

[58] Wang, W., Brakensiek, A., Kosmala and Rigoll G. , “HMM Based High Accuracy Off-Line Cursive Handwriting Recognition by a Baseline Detection Error Tolerant Feature Extraction Approach,” Proceedings of the IWFHR, Amsterdam, The Netherlands, 2000. 

[59] Brakensiek, A., Rottland, A., Kosmala, A., and Rigoll G. , “Off-Line Handwriting Recognition Using Various Hybrid Modeling Techniques and Character N-Grams,” Proceedings of the IWFRH, Amsterdam, The Netherlands, 2000. 

[60] Guillevic, D. and Suen, C. Y., “HMM Word Recognition Engine,” Proceedings of the IV International Conference on Document Analysis and Recognition - ICDAR’97, Ulm , Germany, pp. 544–547, 1997. 

[61] Kim, G., and Kim, S. , “Feature Selection Using Genetic Algorithms for Handwritten Character Recognition,” Proceedings of the International Workshop on Frontiers in Handwriting Recognition, Amsterdam, The Netherlands, 2000. 

[62] Arica, N. and Yarman-Vural, F. T., “Optical Character Recognition for Cursive Handwriting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 6, pp. 801–813, 2002. doi

[63] Koerich, A. and Sabourin, R. and Suen, C. Y., “Fast Two-Level HMM Decoding Algorithm for Large Vocabulary Handwriting Recognition,” in Proc. Ninth Workshop Frontiers in Handwriting Recognition, 2004, pp. 232–237. doi

[64] Kessentini, Y., Paquet, T. and Benhamadou, A., “A Multi-stream Approach to Off-Line Handwritten Word Recognition,” in ICDAR ’07: Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) Vol 1. Washington, DC, USA: IEEE Computer Society, 2007, pp. 317–321. doi

[65] Koch, G., Paquet, T. and Heutte, L., “Combination of Contextual Information for Handwritten Word Recognition,” in Proceedings of the Ninth International Workshop on Frontiers in Handwriting Recognition. Washington, DC, USA: IEEE Computer Society, 2004, pp. 468–473. doi

[66] Shetty, S., Srinivasan, H. and Srihari, S., “Handwritten Word Recognition Using Conditional Random Fields,” in Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) Vol 2. Washington, DC, USA: IEEE Computer Society, 2007, pp. 1098–1102. doi