Купить СНПЧ А7 Архангельск, оперативня доставка

Diversidade Cooperativa Adaptativa Aplicada a Redes de Sensores sem Fio

DOI: http://dx.doi.org/10.12702/DS-000000002

 downloadpdf

SOUSA, Marcelo Portela

 

Resumo: Redes de sensores sem fio (RSSFs) têm se tornado populares em diversas áreas de aplicações industriais, civis, multimídia, etc. O desempenho desses sistemas pode ser melhorado pela utilização da técnica de diversidade cooperativa adaptativa (SCA), que é basicamente um projeto de relacionamento entre camadas que combina o ARQ Truncado na camada de enlace e a diversidade cooperativa na camada física. Adicionalmente, o protocolo LEACH provê a vantagem de utilizar a rotação aleatória de coordenadores de grupo locais, para igualmente distribuir a dissipação de energia entre os nós sensores na rede. Este trabalho propõe um sistema integrado, o SCA com LEACH, e avalia seu desempenho em relação ao sistema LEACH com ARQ Truncado. A comparação é baseada no tempo de vida da rede e taxa de perda de pacote do sistema, sob a variação de cenários de propagação, número de retransmissões, energia inicial por nó, comprimento do pacote de dados e tamanho físico da rede. A qualidade de transmissão de imagens usando as duas técnicas também é avaliada. Resultados de simulações mostram um melhor desempenho do sistema proposto.

Palavras-chave: RSSF, Diversidade Cooperativa Adaptativa, SCA, Protocolo LEACH, Avaliação de Desempenho

 

Abstract: Wireless sensor networks (WSNs) are becoming popular in many applications, such as industrial, civilian, multimedia, etc. The need to improve the performance of such systems can be attained by using the adaptive cooperative diversity (SCA) technique, which is basically a cross-layer design that combines Truncated ARQ at the link layer and cooperative diversity at the physical layer. In addition, the LEACH protocol has the advantage of utilizing randomized rotation of local cluster-heads to evenly distribute the energy load among the sensors in the network. This dissertation proposes an integrated system, SCA with LEACH and evaluates its performance with LEACH with Truncated ARQ system. A comparison is obtained based on network lifetime and packet loss rate of the system under varying propagation scenarios, number of retransmissions, initial energy by node, packet length and network size. The performance of image transmissions using both techniques is also evaluated. Simulation results show better performances for the proposed system.

Key words: WSN, Adaptive Cooperative Diversity, SCA, LEACH Protocol, Performance Evaluation

 

Literatura Citada

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a survey. Computer Networks, 38:393–422, 2002. doi

[2] Y. Chen and Q. Zhao. On the lifetime of wireless sensor networks. IEEE Communications Letters, 9(11):976–978, November 2005. doi

[3] G. Anastasi, M. Conti, M. Francesco, and A. Passarella. Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3):537–568, May 2009. doi

[4] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2:10 pp., Jan. 2000. doi

[5] E. Malkamaki and H. Leib. Performance of truncated type-II hybrid ARQ schemes with noisy feedback over block fading channels. IEEE Transactions on Communications, 48(9):1477–1487, Sep 2000. doi

[6] Q. Liu, S. Zhou, and G. B. Giannakis. Cross-Layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications, 3(5):1746–1755, Sept. 2004. doi

[7] V. M. DaSilva and E. S. Sousa. Fading-resistant modulation using several transmitter antennas. IEEE Transactions on Communications, 45(10):1236–1244, Oct 1997. doi

[8] J. H. Winters, J. Salz, and R. D. Gitlin. The impact of antenna diversity on the capacity of wireless communication systems. IEEE Transactions on Communications, 42(234):1740–1751, Feb/Mar/Apr 1994.

[9] W. T. A. Lopes and M. S. Alencar. Space-time coding performance improvement using a rotated constellation. Anais do XVIII Simpósio Brasileiro de Telecomunicações (SBrT’2000), Gramado, RS, Brasil, Setembro 2000.

[10] Lin Dai and K. Letaief. Throughput maximization of ad-hoc wireless networks using adaptive cooperative diversity and truncated ARQ. IEEE Transactions on Communications, 56(11):1907–1918, November 2008. doi

[11] V. Tarokh, H. Jafarkhani, and A. R. Calderbank. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45:1456–1467, 1999. doi

[12] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8):1451–1458, 1998. doi

[13] H. Jafarkhani. Space-time coding. Theory and Practice. Cambridge University Press, 2005. doi

[14] K. Sohraby, D. Minoli, and T. Znati. Wireless Sensor Networks: Technology, Protocols, and Applications. John Wiley & Sons, 2007. doi

[15] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with wireless sensor networks. In International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2001), pages 2033–2036, 2001.

[16] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: scalable coordination in sensor networks. In Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking (MobiCom ’99), pages 263–270, New York, NY, USA, 1999.

[17] Chee-Yee Chong and S. P. Kumar. Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE, 91(8):1247–1256, 2003. doi

[18] IEEE Std 802.15.1 IEEE Standard for Information technology- Telecommunications and information exchange between systems- Local and metropolitan area networks- Specific requirements Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications forWireless Personal Area Networks (WPANs). IEEE Std 802.15.1-2002, 2002.

[19] IEEE standard for information technology - telecommunications and information exchange between systems - local and metropolitan area networks specific requirements part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). IEEE Std 802.15.4-2003, 2003.

[20] IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems. IEEE Std 802.16-2009 (Revision of IEEE Std 802.16-2004), 29 2009.

[21] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile networking for "smart dust". In MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, pages 271–278, New York, NY, USA, 1999.

[22] M. Kubisch, H. Karl, A. Wolisz, L. C. Zhong, and J. Rabaey. Distributed algorithms for transmission power control in wireless sensor networks. In IEEE Wireless Communications and Networking Conference (WCNC’2003), volume 1, pages 558–563, March 2003.

[23] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. Saluja. Sensor deployment strategy for target detection. In Proceedings of the 1st ACM international workshop onWireless sensor networks and applications (WSNA’02), pages 42–48, New York, NY, USA, 2002.

[24] M. Welsh, D. Malan, B. Duncan, T. Fulford-Jones, and S. Moulton. Wireless Sensor Networks for Emergency Medical Care. Presented at GE Global Research Conference, Harvard University and Boston University School of Medicine, Boston, MA, Mar. 8, 2004.

[25] M. Hatler. Wireless Sensor Networks: Mass Market Opportunities. ONWorld, Inc., San Diego, CA, Feb. 22, 2004.

[26] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven data acquisition in sensor networks. In Proceedings of the Thirtieth international conference on Very large data bases (VLDB ’04), pages 588–599, 2004.

[27] ZigBee Alliance. Available at. http://www.zigbee.org/. Accessed on August 2009.

[28] R. A. F. Mini, B. Nath, and A. A. F. Loureiro. Prediction-based approaches to construct the energy map for wireless sensor networks. In 21 Simpósio Brasileiro de Redes de Computadores, 2003.

[29] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. A taxonomy of wireless micro-sensor network models. ACM SIGMOBILE Mobile Computing and Communications Review, 6(2):28–36, 2002.doi 

[30] A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro. A novel lightweight algorithm for time-space localization in wireless sensor networks. In Proceedings of the 10th ACM Symposium on Modeling, analysis, and simulation of wireless and mobile systems (MSWiM ’07), pages 336–343, 2007.

[31] teleco.com.br. Available at. http://www.teleco.com.br/tutoriais/tutorialrssf/default.asp. Accessed on August 2009.

[32] T. M. Johnson e M. Margalho. Redes de Sensores Sem Fio para Monitoramento Agro-Climatológico na Amazônia. Universidade da Amazônia (UNAMA), Belém/PA - Brasil.

[33] J. Burrell, T. Brooke, and R. Beckwith. Vineyard computing: Sensor networks in agricultural production. IEEE Pervasive Computing, 3(1):38–45, 2004. doi

[34] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: experiences from a pilot sensor network deployment in precision agriculture. In 20th International Parallel and Distributed Processing Symposium (IPDPS’2006)., April 2006.

[35] T.Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman, P. Valencia, D. Swain, and G. Bishop-Hurley. Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive Computing, 6(2):50–57, 2007. doi

[36] B. F. T. Rudorff e M. A. Moreira. Sensoriamento Remoto Aplicado à Agricultura. Instituto Nacional de Pesquisas Espaciais – INPE, São José dos Campos, 2002.

[37] J. Giacomin and F. Vasconcelos. Wireless Sensor Network as a Measurement Tool in Precision Agriculture. XVIII IMEKO World Congress, Metrology for a Sustainable Development, 17 – 22, September, 2006, Rio de Janeiro.

[38] V. I. Adamchuk et al. On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44:71–91, 2004. doi

[39] V. I. Adamchuk et al. Report from the field: Results from an agricultural wireless sensor network. Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04), pages 471–478, 2004.

[40] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless sensor networks for habitat monitoring. In Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications (WSNA’02), pages 88–97, New York, NY, USA, 2002.

[41] J. G. T. Anderson. Pilot survey of mid-coast maine seabird colonies: an evaluation of techniques. Technical report, Report to the State of Maine Dept. of Inland Fisheries and Wildlife, Bangor, ME, 1995.

[42] J. L. Hill and D. E. Culler. Mica: A wireless platform for deeply embedded networks. IEEE Micro Magazine, 22(6):12–24, 2002. doi

[43] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. A survey on wireless multimedia sensor networks. Computer Networks, 51(4):921 – 960, 2007. doi

[44] W. Feng, B. Code, E. Kaiser, M. Shea, W. Feng, and L. Bavoil. Panoptes: scalable lowpower video sensor networking technologies. In Proceedings of the 11th ACM international conference on Multimedia (MULTIMEDIA’03), pages 562–571, Berkeley, CA, USA, 2003.

[45] P. Kulkarni, D. Ganesan, P. Shenoy, and Q. Lu. Senseye: a multi-tier camera sensor network. In Proceedings of the 13th ACM international conference on Multimedia (MULTIMEDIA’ 05), pages 229–238, Hilton, Singapore, 2005.

[46] C. B. Margi, V. Petkov, K. Obraczka, and R. Manduchi. Characterizing energy consumption in a visual sensor network testbed. In 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM 2006), pages 8 pp.–339, 2006.

[47] M. Wu and C. Chen. Collaborative image coding and transmission over wireless sensor networks. EURASIP Journal on Embedded Systems, pages 223–223, 2007.

[48] R. Cucchiara. Multimedia surveillance systems. In Proceedings of the 3rd ACM international workshop on Video surveillance and sensor networks (VSSN ’05), pages 3–10, Hilton, Singapore, 2005.

[49] I. Downes, L. B. Rad, and H. Aghajan. Development of a mote for wireless image sensor networks. Proceedings of COGnitive systems with Interactive Sensors (COGIS), 2006.

[50] S. Hengstler and H. Aghajan. Application development in vision-enabled wireless sensor networks. In Proceedings of the International Conference on Systems and Networks Communication (ICSNC ’06), page 30, Papeete, Tahiti, French Polynesia, 2006. doi

[51] J. Zhu and S. Papavassiliou. On the connectivity modeling and the tradeoffs between reliability and energy efficiency in large scale wireless sensor networks. In IEEE Wireless Communications and Networking Conference (WCNC’2003), volume 2, pages 1260–1265, New Orleans, Louisiana, USA, March 2003.

[52] F. Xiangning and S. Yulin. Improvement on LEACH Protocol of Wireless Sensor Network. In International Conference on Sensor Technologies and Applications (SensorComm’ 2007), pages 260–264, Valencia, Spain, October. 2007.

[53] W. Liu, X. Li, and M. Chen. Energy efficiency of MIMO transmissions in wireless sensor networks with diversity and multiplexing gains. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05), volume 4, pages 897–900, Philadelphia, USA, March 2005.

[54] X. Li, M. Chen, and W. Liu. Application of STBC-encoded cooperative transmissions in wireless sensor networks. IEEE Signal Processing Letters, 12(2):134–137, Feb. 2005. doi

[55] Y. Yuan, Z. He, and M. Chen. Virtual MIMO-based cross-layer design for wireless sensor networks. IEEE Transactions on Vehicular Technology, 55(3):856–864, May 2006. doi

[56] X. Li. Energy efficient wireless sensor networks with transmission diversity. Electronics Letters, 39(24):1753–1755, 2003. doi

[57] M. S. Alencar. Telefonia Celular Digital. Érica, 2004.

[58] Y. Chen, J. Zhang, and I. Marsic. Link-layer-and-above diversity in multihop wireless networks. IEEE Communications Magazine, 47(2):118–124, February 2009. doi

[59] P. Larsson. Selection diversity forwarding in a multihop packet radio network with fading channel and capture. In Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing (MobiHoc ’01), pages 279–282, Long Beach, CA, USA, 2001.

[60] Marcelo P. Sousa, Ajey Kumar, Marcelo S. Alencar, andWaslon T. A. Lopes. Low-energy adaptive cooperative diversity applied to wireless sensor networks. In SBrT 2009, sep. 2009.

[61] Marcelo P. Sousa, Marcelo S. Alencar, Ajey Kumar, andWaslon T. A. Lopes. Performance evaluation of a selective cooperative scheme for wireless sensor networks. The Sixth ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks – ACM PE-WASUN, 2009.

[62] Marcelo P. Sousa, Ajey Kumar, Marcelo S. Alencar, and Waslon T. A. Lopes. Scalability in an adaptive cooperative system for wireless sensor networks. In IEEE SASN ’09 The International Workshop on Scalable Ad Hoc and Sensor Networks, St. Petersburg, Russia.

[63] A. Sendonaris, E. Erkip, and B. Aazhang. User Cooperation Diversity - Part I: System Description. IEEE Transactions on Communications, 51:1927–1938, 2003. doi

[64] A. Sendonaris, E. Erkip, and B. Aazhang. User Cooperation Diversity - Part II: Implementation Aspects and Performance Analysis. IEEE Transactions on Communications, 51:1939–1948, 2003. doi

[65] J. N. Laneman and G. W. Wornell. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10):2415–2425, 2003. doi

[66] B. Vucetic and J. Yuan. Space-time Coding. John Wiley & Sons, 2003. doi

[67] L. Yang and Lajos Hanzo. Adaptive space-time-spreading-assisted wideband CDMA systems communicating over dispersive Nakagami-m fading channels. EURASIP Journal on Wireless Communications and Networking, 2005(2):216–230, 2005.

[68] M. Ju, H. Song, and I. Kim. Exact BER analysis of distributed alamouti’s code for cooperative diversity networks. IEEE Transactions on Communications, 57(8):2380–2390, Aug. 2009. doi

[69] Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design. IEEE Transactions on Communications, 28(1):84–95, 1980. doi

[70] W. T. A. Lopes. Diversidade em Modulação Aplicada a Transmissão de Imagens em Canais com Desvanecimento. Tese de doutorado, Universidade Federal de Campina Grande, Campina Grande, Brasil, Junho 2003.

[71] B. Liu, B. Otis, S. Challa, P. Axon, C. Chou, and S. Jha. On the fading and shadowing effects for wireless sensor networks. In IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS’06), pages 51–60, Oct. 2006.