Limitações Fotossintéticas em Folhas de Plantas de Tomateiro Submetidas a Crescentes Concentrações Salinas
DOI: http://dx.doi.org/10.13083/1414-3984.v22n02a05
http://www.seer.ufv.br/seer/index.php/reveng/index
Sandro Dan Tatagiba1, Gustavo A. B. K. Moraes2, Kelly J. T. Nascimento3 & Anelisa de F. Peloso4
Resumo: O objetivo deste trabalho foi avaliar as trocas gasosas, os parâmetros de fluorescência da clorofila a, a concentração de pigmentos fotossintéticos e o potencial osmótico em plantas de tomateiro submetidas a crescentes concentrações salinas. Para esta finalidade, plantas de tomateiro do cultivar Santa Clara foram cultivadas em vasos de 5 dm3 contendo solução nutritiva de Hoagland e submetidas aos tratamentos de 0, 50, 100 e 150 mmol L-1 de NaCl. O experimento foi realizado em casa de vegetação no Campus da Universidade Federal de Viçosa, num delineamento inteiramente casualizado com quatro repetições. Cada unidade experimental foi constituída por um vaso contendo duas plantas. Os resultados mostraram que o potencial osmótico nas folhas e nas raízes apresentaram reduções significativas à medida que se aumentava a concentração de NaCl na solução nutritiva, detectando o aumento do estresse sobre as plantas. A utilização da energia para os processos fotossintéticos e a capacidade de dissipação do excesso de energia na maquinaria fotossintética foi comprometida pelas crescentes concentrações salinas impostas pelos tratamentos, reduzindo a fotossíntese e o rendimento fotoquímico, demonstrado pelas trocas gasosas e pelos parâmetros de fluorescência de clorofila a, evidenciando que houve dano ao aparato fotossintético na fase bioquímica. As concentrações de pigmentos fotossintéticos diminuíram significativamente com o aumento na concentração salina, limitando a absorção da radiação fotossinteticamente ativa.
Palavras-chave: estresse salino, fluorescência da clorofila a, Solanum lycopersicum, pigmentos fotossintéticos, trocas gasosas
Abstract: The aim of this study was to evaluate gas exchange, fluorescence parameters of chlorophyll a, photosynthetic pigment concentration, and osmotic potential in tomato plants subjected to increasing salt concentrations. For this purpose tomato plants, cultivar Santa Clara, were grown in 5 dm3 pots containing Hoagland nutrient solution and subjected to treatments of 0, 50, 100 and 150 mM NaCl. The experiment was conducted in a greenhouse of the University Federal de Viçosa in a completely randomized design with four replications. Each experimental unit consisted of one pot containing two plants. The results showed that the osmotic potential in leaves and roots decreased significantly as the NaCl concentration in the nutrient solution increased by detecting the elevation of stress on the plants. The use of energy for the photosynthetic processes and dissipation of excess energy in photosynthetic machinery was compromised by increasing salt concentrations imposed by the treatments, reducing photosynthesis and photochemical efficiency demonstrated by gas exchange and the fluorescence parameters of chlorophyll a, indicating that there was damage to the photosynthetic apparatus in the biochemical phase. The photosynthetic pigments decreased significantly with increasing salt concentration, limiting the absorption of photosynthetically active radiation.
Key words: salt stress, fluorescence of chlorophyll a, Solanum lycopersicum, photosynthetic pigments, gas exchange
1 Engenheiro Agrônomo, Doutor em Fisiologia Vegetal, UFV/Viçosa-MG, E-mail: sandrodantatagiba@yahoo.com.br
2 Engenheiro Agrônomo, Doutor em Fisiologia Vegetal, UFV/Viçosa-MG, E-mail: gustavo.kling@gmail.com
3 Engenheira Agrônoma, Doutora em Fisiologia Vegetal, UFV/Viçosa-MG, E-mail: kellytelles@gmail.com
4 Engenheira Agrônoma, UFV/Boa Esperança-MG, E-mail: anelisapeloso@yahoo.com.br
Literatura Citada
Adams , S.R.; Vald és, V.M. The effect of periods of high temperature and manipulating fruit load on the pattern of tomato yields. The Journal of Horticultural Science & Biotechnology, v.77, p.461-466, 2002.
Allak hve rdiev , S.i.; Sakamoto , A.; Nishiyama , Y.; Inaba , M.; Murata , N. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, v.123, p.1047-1056, 2000.
Alva renga , M.A.R. Tomate: produção em campo, em casa de vegetação e em hidroponia. Lavras: UFLA, 2004. 400p.
Ayers, R.S.; Westcot , D.W. Qualidade de água na agricultura. Tradução de Gheyi HR , Medeiros JF, Damasceno FAV. Campina Grande: UFPB, 1991. 218p.
Azevedo , L.C. Mecanismos de adaptação e fotoproteção em tomateiros submetidos ao estresse salino. 2009. 52p. Dissertação de Mestrado - Universidade Federal de Viçosa, Viçosa, 2009.
Belk hod ja, R.; Morales , F.; Abad ía, A.; Gómez -Apa risi, J.; Abad ía, J. . Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology, v.104, p.667-673, 1994.
Bilge r, W.; Schreibe r, U.; Bock . Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia, v.102, p.425-432, 1995.
Bol har-Nordenkampf , H.R.; Long , S.P.; Bake r, N.R.; Oqu ist , G.; Schreibe r, U.; Lec hne r, E.G. Chlorophyll fluorescence as probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecology, v.3, p.497-514, 1989.
Chaves , M.M.; Maroco , J.P.; Pereira, J.S. Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology, v.30, p.239-264, 2003.
Debouba , M.; Hab ib, M.; Gou ia, G.H. Effects of nitrogen deficiency and NaCl on chlorophyll fluorescence of PSII in tomato (Solanum lycopersicon Chibli F1). Acta Botany Gallica, v.154, p.635-642, 2007.
De Las Rivas , J.; Barbe r, J. Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy. Biochemistry, v.36, p.8897-8903, 1997.
Eve rard, J.D.; Gucc i, R.; Kann , S.C.; Flo re, J.A.; Loesc her, W.H. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiology, v.106, p.281-292, 1994.
FAO - FOOD AGRI CULTURAL ORGANIZATION TRADE YEAR-BOOK, Roma, v.59. 2009. Flo wers, T.J. Improving crop salt tolerance. Journal of Experimental Botany, v.55, p.307-319, 2004.
Gent y, B.; Brianta is, J.M.; Bake r, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, v.990, p.87-92, 1989.
Ghanem , M.E.; Albacete , A.; Mat ínez - Andu jar, C.; Acosta , M.; Rome ro- Aranda , R.; Dodd , I.C.; Lutts , S.; Alfocea , F.O. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). Journal of Experimental Botany, v.59, p.3039-3050, 2008.
Gómez , O.; Casanova , A.; Late rrot , H.; Ana is, G. Mejora genética y manejo del cultivo de tomate para la producción en el Caribe. La Habana, Instituto de Ivestigaciones Horticolas “Liliana Dimitrova”, 2000. 159p.
Gulza r, S.; Khan , M.A.; Unga r, I.A. Salt tolerance of a coastal salt marsh grass. Communications in Soil Science and Plant Analysis, v.34, p.2595-2605, 2003.
He rralde , F.D.; Biel , C.; Sav é, R.; Morales , M.A.; Torrec ilias , A.; Ala rcón, J.J.; Sánc hez -Blanco , M.J. Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science, v.139, p.9-17, 1998.
Hisco x, J.D.; Is raelstam , G.F. A method for the extraction of clhlorophyll from leaf tissue without maceration. Canadian Journal of Botany, v.57, p.1332-1334, 1979.
Hoagland , D.R.; Arnon , D.I. The waltercultured method for growing without soil. California Agricultural Experiment Station, (Circular, 347), 1950, 32p.
IBGE - Instituto Brasileiro de Geografia e Estatística. Levantamento Sistemático da produção Agrícola. Rio de Janeiro, v.25, n.02, p.1-88, 2012.
Jimenez , M.S.; Gonzalez -Rod riguez , A.M.; Morales , D.; Cid, M.C.; Soco rro, A.R.; Caball éro, M. Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses. Photosynthetica, v.33, p.291-301, 1997.
Khava rine jad , R.A.; Chapa rzade h, N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica, v.35, p.461-466, 1998.
Klug hamme r, C.; Schreibe r, U. Complementary PSII quantum yield calculated from simple fluorescence parameters measured by PAM fluorometry and saturation pulse method. PAM Application Notes, v.1, p.27-35, 2008.
Krause , G.H.; We is. E. Chlorophyll fluorescence and photosynthesis: the basic. Annual Review of Plant Physiology and Plant Molecular Biology, v.42, p.313-349, 1991.
Larcher, W. Ecofiosiologia Vegetal. São Carlos: Rima, 2004 531p.
Lima , A.L.S.; Da Matt , F.M.; Pinheiro, H.A.; Tótola , M.R.; Lou reiro, M.E. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environmental and Experimental Botany, v.47, p.239-247, 2002.
Longst ret h, D.J.; Nobel , P.S. Salinity effects on leaf anatomy. Plant Physiology, v.63, p.700-703, 1979.
Loreto , F.; Cent ritto , M.; Chartzoulak is. Photosynthetic limitations in olive cultivars with diferente sensitivity to salt stress. Plant, Cell an Environment, v.26, p.959-601, 2003.
Lu, C.; Zhang , J. Thermostability of photosystem II is increased in salt-stressed sorghum. Australian Journal of Plant Physioloy, v.25, p.317-324, 1998.
Ma, H. C.; Fung , L.; Wang , S.S.; Altman , A.; Hutte rmann , A. Photosynthetic response of Populus euphratica to salt stress. Florest Ecology and Management, v.93, p.55-61, 1997.
Marsc hne r, H. Mineral nutrition of higher plants. 2a ed. London: Academic Press, 1995. 889p.
Martins , G. Uso de casa de vegetação com cobertura plástica na tomaticultura de verão. 1992. 65p. Tese de Doutorado – Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal. 1992.
Mede iros , J.F.; Gheyi, H.R. Manejo do sistema solo-água planta em solos afetados por sais. In: Gheyi, H.R.; Que iroz , J.E.; Mede iros , J.F. Manejo e controle da salinidade na agricultura irrigada, Campina Grande: UFPB, SBEA, p.239-284, 1997.
Melon i, D.A.; Oliva , M.A.; Mat inez , C.A.; Camb raia, J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, v.49: p.69-76, 2003.
Mouget , J.; Trembl in, G. Suitability of the fluorescence monitoring system (FM, Hansatech) for measurement of photosynthetic characteristics in algae. Aquatic Botany, v.74, p.19-231, 2002.
Neto , A.D.A. Estresse salino, estresse oxidativo e tolerância cruzada em plantas de milho. In: Estresses ambientais: danos e benefícios em plantas. Nogue ira, R.M.C.; Araújo, E.L.; Willad ino , L.G. Recife ; UFRPE, Imprensa Universitária, 2005. 500p.
Netto , A.T.; Campost rini, E.; Olive ira, G.J.; Bressan -Smith, R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, v.104, p.199-209, 2005.
Papageo rgiou , G.C.; Alygizak i-Zob ra, A.; Ladas , N.; Murata , N. A method to probe the cytoplasmic osmolarity and osmotic water and solute fluxes across the cell membrane of cyanobacteria with Chl a florescence: experiments with Synechococcus sp. Physiologia Plantarum, v.103, p.215-224, 1998.
Parida , A.K.; Das , A.B.; Mitt ra, B. Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees - Structure and Function, v.18, p.167-174, 2004.
Redd y, M.P.; San ish, S.; Iyenga r, E.R.R. Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiate Roxb. under saline conditions. Photosynthetica, v.26, p.173-179, 1992.
Ro hácek , K. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, v.40, p.13-29, 2000.
Schmutz , U. Effect of salt stress (NaCl) on whole plant CO2-gas exchange in mango. Acta Horticulturae, v.509, p.269-276, 2000.
STATISTICAL Analysis System. 6.12 versão para Windows®. Cary: SAS Institute, 1996.
Shannon , M.C.; Grieve , C.M.; Franco is, L.E. Whole-plant response to salinity. In: Wilkinson RE. Plant environment interactions. New York: Marcel Dekker, 1994. p.199-244.
Taiz, L.; Zeige r, E. Fisiologia vegetal. 4a ed. Porto Alegre: Artemed, 2009. 848p.
Verslues , P.E.; Aga rwal , M.; Kat iyar-Aga wal , S.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, v.45, p.523-539, 2006.
Wellbu rn, A.R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, v.144, p.307-3013, 1994.
West , D.W. Stress physiology in trees-salinity. Acta Horticulture, v.175, p.322-329, 1986.
Zanand rea , L.; Nass i, F.M.; Turchetto , A.C.; Braga , E.J.B.; Pete rs, J.Á.; Baca rin, M.A. Efeito da salinidade sob parâmetros de fluorescência em Phaseolus vulgaris. Revista Brasileira Agrociência, v.12, p.157-161, 2006.